Application of Low-Cost GPS Tools and Techniques for Landslide Monitoring: A Review

Authors

  • E.E. Eyo Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • T. A. Musa Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • K. M. Omar Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • K. M. Idris Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • T. Bayrak Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • I. C. Onuigbo Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Y. D. Opaluwa Department of Geomatic Engineering, Faculty of Geoinformation & Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v71.3828

Keywords:

Continuous landslide monitoring, Low-cost, Reverse RTK, GPS

Abstract

The main goal of our ongoing research is to design a low-cost continuous monitoring system for landslide investigation using the Reverse RTK (RRTK) technique. The main objectives of this paper are to review the existing Global Positioning System (GPS) tools and techniques used for landslide monitoring, and to propose a novel low-cost landslide monitoring technique using Reverse RTK GPS. A general overview of GPS application in landslide monitoring is presented, followed by a review of GPS deformation monitoring systems and some of the factors used for their categorization. Finally, the concept, principles and advantages of the proposed new landslide monitoring system are discussed.

References

D. M. Cruden. 1991. A simple definition of a landslide. Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Géologie de l'Ingénieur. 43(1) : 27–29.

F. Guzzetti. 2005. Landslide hazard and risk assessment. PhD dissertation. University of Bonn. 389.

F. Gutiérrez, M. Soldati, F. Audemard, D. Bălteanu. 2010. Recent advances in landslide investigation: Issues and perspectives. Geomorphology. 124(3-4) : 95–101.

J.-C. Flageollet. 1996. The time dimension in the study of mass movements. Geomorphology. 15(3-4) : 185–190.

S. Q. Qin, J. J. Jiao, S. J. Wang. 2001. The predictable time scale of landslide. Bulletion of Engineering Geology and Environment. 59(4) : 307–312.

T. Glade. 2003. Landslide occurrence as a response to land use change: A review of evidence from New Zealand. CATENA. 51(3–4) : 297–314.

R. C. Sidle, D. Taylor, X. X. Lu, W. N. Adger, D. J. Lowe, W. P. de Lange, R. M. Newnham, J. R. Dodson. 2004. Interactions of natural hazards and society in Austral-Asia: Evidence in past and recent records. Quaternary International. 118–119(0) : 181–203.

M. Geertsema, J. J. Clague, J. W. Schwab, S. G. Evans. 2006. An overview of recent large catastrophic landslides in northern British Columbia, Canada. Engineering Geology. 83(1–3) : 120–143.

USGS. 2013. Landslide events in 2013. http://landslides.usgs.gov/recent/index.php?year= 2013&month. Accessed on May 27, 2013.

C. Mekik, M. Arslanoglu. 2009. Investigation on accuracies of Real Time Kinematic GPS for GIS applications. Remote Sensing. 1(1) : 22–35.

T. Takasu, A. Yasuda. 2009. Development of the low-cost RTK GPS receiver with the open source program package RTKLIB. International Symposium on GPS/GNSS. International Convention Centre Jeju, Korea.

N. Brown, L. Troyer, O. Zelzer, J. van Cranenbroek. 2006. Advances in RTK and post processed monitoring with single frequency GPS. Journal of Global Positioning Systems. 5(1-2) : 145–151.

H. Y. Chen. 2001. A study on real-time medium-range carrier phase-based GPS multiple reference stations. UNISURV S-64. The University of New South Wales, Sydney, Australia. 182.

C. A. Roberts. 2002. A continuous low-cost GPS-based volcano deformation monitoring system in Indonesia. UNISURV S-73. School of Surveying & Spatial Information Systems. The University of New South Wales, Sydney, Australia. 271.

S. Verhagen, D. Odijk, P. J. G. Teunissen, L. Huisman. 2010. Performance improvement with low-cost multi-GNSS receivers. 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC). Noordwijk, 8-10 December.

F. Yu. 2011. The feasibility of applying single-frequency receivers to slope monitoring. Geotechnical Special Publication. ASCE Library. 216 : 13–141.

C. Rizos, J. van Cranenbroeck, V. Lui. 2010. Advances in GNSS-RTK for structural deformation monitoring in regions of high ionospheric activity. Proceedings of FIG Congress 2010. Sydney, Australia. 11-16 April.

L. E. Aguado, C. O'Driscoll, P. Xia, K. Nurutdinov, C. Hill, P. O'Beirne. 2006. A low-cost, low-power Galileo/GPS positioning system for monitoring landslides. Proceedings of the 2006 Navitec, October 2006.

J. Glabsch, O. Heunecke, S. Schuhbäck. 2009. Monitoring the Hornbergl landslide using a recently developed low cost GNSS sensor network. Journal of Applied Geodesy. 3 : 179–192.

B. Lei, Q. Li, X. Li. 2011. Landslide monitoring system based on RTK technology. 4th International Workshop on Advanced Computational Intelligence. Wuhan, Hubei, China, October 19–21.

V. Sadarviana, E. Martoyo, H. Z. Abidin. 2006. The use of geodetic approach for identification of landslide’s characteristics and types (Case study: landslide zone in Ciloto, West Java, Indonesia). Proceedings of the 2006 International Symposium and Exhibition on Geoinformation. September 19-21. Kuala Lumpur, Malaysia.

M. Stewart, M. Tsakiri. 2001. The application of GPS to dam surface monitoring. Journal of Geospatial Engineering. 3(1) : 45–57.

L. Biagi, A. Dermanis. 2005. The treatment of time continuous GPS observations for the determination of regional deformation parameters. Proceedings of the 2005 Geodetic Deformation Monitoring: From Geophysical to Engineering Roles. IAG Symposium. March 17-19, Jaén, Spain. 83–94.

A. Pirti, K. Gümüş, H. Erkaya, R. Gürsel, R. G. Hoşbaş. 2010. Evaluating repeatability of RTK GPS/GLONASS near/under forest environment. Croatian Journal of Forest Engineering. 31(1) : 23–33.

C. Ogaja, X. Li, C. Rizos. 2007. Advances in structural monitoring with Global Positioning System technology: 1997-2006. Journal of Applied Geodesy. 1(3) : 171–179.

M. S. Rawat, V. Joshi, B. S. Rawat, K. Kumar. 2011. Landslide movement monitoring using GPS technology: A case study of Bakthang landslide, Gangtok, East Sikkim, India. Journal of Development and Agricultural Economics. 3(5) : 194–200.

G.-Q. Wang. 2012. Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations. Landslides. 9(1) : 117–130.

M. Yalçinkaya, T. Bayrak. 2002. GPS in landslides monitoring: A case study from North Eastern Turkey. International Symposium on GIS. Istanbul, Turkey.

G. Wang, T. Soler. 2012. OPUS for horizontal subcentimeter-accuracy landslide monitoring: Case study in Puerto Rico and Virgin Islands region. Journal of Surveying Engineering. 138(3) : 11.

R. Xiao, X. He, L. Li. 2012. Continuous monitoring of landslide and atmospheric water vapour using GPS: Applications in Pubugou Hydropower Resettlement Zone. Proceedings of the 2012 China Satellite Navigation Conference (CSNC). Lecture Notes in Electrical Engineering. 305–313.

E. Bertachini, A. Capitani, A. Capra, C. Castagnetti, A. Corsini, M. Dubbini, F. Ronchetti. 2009. Integrated surveying system for landslide monitoring, Valoria landslide (Appennines of Modena, Italy). FIG Working Week 2009. Eilat, Israel.

S. Calcaterra, C. Cesi, C. Di Maio, P. Gambino, K. Merli, M. Vallario, R. Vassallo. 2012. Surface displacements of two landslides evaluated by GPS and inclinometer systems: A case study in Southern Apennines, Italy. Natural Hazards. 61(1) : 257–266.

J. A. Coe, W. L. Ellis, J. W. Godt, W. Z. Savage, J. E. Savage, J. A. Michael, J. D. Kibler, P. S. Powers, D. J. Lidke, S. Debray. 2003. Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation. July 1998-March 2002. Engineering Geology. 68 : 67–101.

J. A. Gili, J. Corominas, J. Rius. 2000. Using Global Positioning System techniques in landslide monitoring. Engineering Geology. 55(3) : 167–192.

J.-P, Malet, O. Maquaire, E. Calais. 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides: Application to the Super-Sauze earthflow (Alpes-de-Haute-Province, France). Geomorphology. 43 : 33–54.

J. L. Moss. 2000. Using the Global Positioning System to monitor dynamic ground deformation networks on potentially active landslides. International Journal of Applied Earth Observation and Geoinformation. 2(1) : 24–32.

V. Rizzo. 2002. GPS monitoring and new data on slope movements in the Maratea Valley (Potenza, Basilicata). Physics and Chemistry of the Earth. Parts A/B/C. 27(36) : 1535–1544.

F. Tagliavini, M. Mantovani, G. Marcato, A. Pasuto, S. Silvano. 2007. Validation of landslide hazard assessment by means of GPS monitoring technique - A case study in the Dolomites (Eastern Alps, Italy). Natural Hazards and Earth System Sciences. 7 : 185–193.

P. Mora, P. Baldi, G. Casula, M. Fabris, M. Ghirotti, E. Mazzini, A. Pesci. 2003. Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: Application to the Ca' di Malta landslide (Northern Apennines, Italy). Engineering Geology. 68(1–2) : 103–121.

M. Peyret, Y. Djamour, M. Rizza, J. F. Ritz, J. E. Hurtrez, M. A. Goudarzi, H. Nankali, J. Chéry, K. Le Dortz, F. Uri. 2008. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Engineering Geology. 100(3–4) : 131–141.

H. Rott, T. Nagler. 2006. The contribution of radar interferometry to the assessment of landslide hazards. Advances in Space Research. 37(4) : 710–719.

G. Wang, D. Philips, J. Joyce, F. Rivera. 2011. The Integration of TLS and continuous GPS to study landslide deformation: A Case study in Puerto Rico. Journal of Geodetic Science. 1(1) : 25–34.

V. Janssen, C. Rizos. 2003. A mixed-mode GPS network processing approach for deformation monitoring applications. Survey Review. 37(287) : 2–19.

C. Squarzoni, C. Delacourt, P. Allemand. 2005. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Engineering Geology. 79(3–4) : 215–229.

F. K. Brunner, K. Macheiner, H. Woschitz. 2007. Monitoring of deep-seated mass movements. Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure. British Columbia, Canada.

K. Hastaoglu, D. Sanli. 2011. Monitoring Koyulhisar landslide using rapid static GPS: A strategy to remove biases from vertical velocities. Natural Hazards. 58(3) : 1275–1294.

G. Wang. 2011. GPS landslide monitoring: Single Base vs. Network Solutions - A case study based on the Puerto Rico and Virgin Islands Permanent GPS Network. Journal of Geodetic Science. 1(3) : 191–203.

Z. Othman, W. A Wan Aziz, A. Anuar. A. 2011. Evaluating the performance of GPS survey methods for landslide monitoring at Hillside Residential Area: Static vs Rapid Static. IEEE 7th International Colloquium on Signal Processing and its Applications. George Town, Penang.

Z. Othman, W. A. Wan Aziz, A. Anuar. 2011b. Landslide monitoring at Hillside Residential Area Using GPS technique: Static vs. RTK Network. Joint International Symposium & Exhibition on Geoinformation (ISG) 2011 and ISPRS 2011. Shah Alam Convention Centre, Selangor.

3D Tracker User Manual. 2009. Published by Applied Geomechanics. San Francisco, USA. 95.

G. Gassner, A. Wieser, F. K. Brunner. 2002. GPS software development for monitoring of landslides. Proceedings of the 2002 FIG XXII International Congress. Washington, D. C. USA, April 19-26.

F. K. Brunner, H. Hartinger, B. Richter. 2000. Continuous monitoring of landslides using GPS: A progress report. In Proceedings of the Geophysical Aspects of Mass Movements. Austrian Academy of Sciences. Vienna. 75–88.

H. Hartinger, F. K. Brunner. 1999. Development of a system of landslide motions using GPS. Proceedings of the 9th FIG Symposium on Deformation Monitoring. Olsztyn, Poland. 27-30 September. 29–38.

R. Klostius, S. Schön, F. Zobl, F. K. Brunner. 2005. Online monitoring of landslides using GPS. Geophysical Research Abstracts. 7 : 02983.

G. Wübbena, A. Bagge, G. Boettcher, M. Schmitz, P. Andree. 2001. Permanent object monitoring with GPS and 1 millimeter accuracy. Paper presented at the International Technical Meeting, ION GPS-01. September 11-14, 2001. Salt Lake City, Utah.

R. Jäger, F. González. 2005. GNSS/GPS/LPS based Online Control and Alarm System (GOCA) - Mathematical models and technical realization of a system for natural and geotechnical deformation monitoring and hazard prevention. Proceedings of the 2005 Geodetic Deformation Monitoring: From Geophysical to Engineering Roles, IAG Symposium. Jaén, Spain, March 17-19.

R. Jäger, S. Kälber. 2004. GNSS/GPS/LPS based Online Control and Alarm System (GOCA) - A geodetic contribution to natural and geotechnical deformation monitoring and hazard prevention. Proceedings of the 2004 Workshop on Environmental Problems and Ecological Safety, Germany, Wiesbaden, September 29 - October 1.

C. D. Ince, M. Sahin. 2000. Real-time deformation monitoring with GPS and Kalman filter. Earth Planet Space. 52 : 837–840.

J. van Cranenbroeck, L. Troyer. 2004. Leica GPS Spider for deformation monitoring. Poster presented at 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering/Workshop on Measurements and Analysis of Cyclic Deformations and Structural Vibrations. The University of Nottingham, United Kingdom. 28 June - 1 July.

J. V. Andersson. 2008. A complete model for displacement monitoring based on undifferenced GPS observations. Doctoral thesis. Division of Geodesy. Geodesy Report No. 1066. Royal Institution of Technology(KTH), Stockholm, Sweden. 172.

A. Szostak-Chrzanowski, A. Chrzanowski. 2008. Interdisciplinary approach to monitoring, analysis, and modelling of deformations. Electronic Journal of Polish Agricultural Universities. 11(2) : 29.

I. Petrovski, S. Kawaguchi, H. Torimoto, M. Asako, T. Chachin, K. Okano. 2000. Lamos-BohsaiTM: Landslide monitoring system based

on high-speed sequential analysis for inclination. Proceedings of the 2000 National Technical Meeting of the Institute of Navigation. January 26-28. Pacific Hotel Disneyland, Anaheim, California, USA.

ClimChAlp. 2008. Slope monitoring methods: A state of the art report. Climate Change, Impacts and Adaptation Strategies in the Alpine Space. Work Package 6. Munich. 28.2.2008. 165.

F. C. Dai, C. F. Lee. 2002. Landslide characteristics and slope instability modelling using GIS. Lantau Island, Hong Kong. Geomorphology. 42(3-4) : 213–228.

K. Thuro, T. Wunderlich, O. Heunecke. 2007. Development and testing of an integrative 3D early warning system for alpine instable slopes (alpEWAS). In: Geotechnologien (2007): Early Warning Systems in Earth Management. Science Report. (10):101–112.

C. Arnhardt, K. Asch, R. Azzam, R. Bill, T. M. Fernandez-Steeger, S. D. Homfeld, A. Kalash, F. Niemeyer, H. Ritter, M. Toloczyki, K. Walter. 2007. Sensor based landslide early warning system - SLEWS: Development of a geoservice infrastructure as basis for early warning systems for landslides by integration of real-time sensors. Geotechnologien Science Report. 10 : 75–88.

S. Gabriele, G. D’Aquila, F. Chiaravalloti. 2009. A distributed real-time monitoring system for landslide hazard and risk assessment. Proceedings of the 2009 Geospatial Visual Analytics: Geographical Information Processing and Visual Analytics for Environmental Security. NATO Science for Peace and Security Series C: Environmental Security. 2009. Part 7 : 387–394.

A. M. Kandawasvika. 2009. On interoperable management of multi-sensors in landslide monitoring applications. PhD thesis, Universität der Bundeswehr München, Germany. 172.

J. Travelletti, C. Delacourt, P. Allemand, J.-P Malet, J. Schmittbuhl, R. Toussaint, M. Bastard. 2012. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remotes Sensing. 70 (2012) : 39–55.

J. Bond, A. Chrzanowski, D. Kim. 2008. Bringing GPS into harsh environments for fully automated deformation monitoring. GPS Solutions. 12:1–11.

J. Bond, D. Kim, A. Chrzanowski, A. Szostak-Chrzanowski. 2007. Development of a fully automated. GPS based monitoring system for disaster prevention and emergency preparedness: PPMS+RT. Sensors. 7 : 1028–1046.

Y. Feng, J. Wang. 2008. GPS RTK performance characteristics and analysis. Journal of Global Positioning System. 7(1) :1–8.

Y. Feng, J. Wang. 2007. Exploring GNSS RTK performance benefits with GPS and virtual Galileo measurements. Proceedings of the 2007 National Technical Meeting of the Institute of Navigation. San Diego, CA, January 22-24. 218–226.

Y. Feng, C. Rizos, M. Higgins, S. Lim, M. Tang. 2009. Developing regional precise positioning services using the legacy and future GNSS receivers. Journal of Global Positioning Systems. 8(1): 17–25.

M. Kanzaki. 2006. Inverted RTK System and its applications in Japan. Proceedings of the 2006 12th IAIN Congress and 2006 International Symposium on GPS/GNSS. Jeju, Korea, 18-20 October. 455–458.

C. Rizos. 2007. Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solutions. 11(3) : 151–158.

S. Lim, C. Rizos. 2008. A conceptual framework for server-based GNSS operations. Journal of Global Positioning Systems. 7 (2): 125–132.

N. Zinas, A. Parkins, M. Ziebart. 2012. Improved network-based single-epoch ambiguity resolution using centralized GNSS network processing. GPS Solutions. 23 February 2012. 1-11, doi: 10.1007/s10291-012-0256-x.

Downloads

Published

2014-12-29

How to Cite

Application of Low-Cost GPS Tools and Techniques for Landslide Monitoring: A Review. (2014). Jurnal Teknologi, 71(4). https://doi.org/10.11113/jt.v71.3828