BI-IDEALS OF ORDERED SEMIGROUPS BASED ON THE INTERVAL-VALUED FUZZY POINT
DOI:
https://doi.org/10.11113/jt.v78.3841Keywords:
Interval-valued fuzzy bi-ideals, Interval-valued -fuzzy bi-ideal, Interval-valued fuzzifying bi-ideal, -implication-based interval-valued fuzzy bi-idealAbstract
Interval-valued fuzzy set theory (advanced generalization of Zadeh's fuzzy sets) is a more generalized theory that can deal with real world problems more precisely than ordinary fuzzy set theory. In this paper, we introduce the notion of generalized quasi-coincident with () relation of an interval-valued fuzzy point with an interval-valued fuzzy set. In fact, this new concept is a more generalized form of quasi-coincident with relation of an interval-valued fuzzy point with an interval-valued fuzzy set. Applying this newly defined idea, the notion of an interval-valued -fuzzy bi-ideal is introduced. Moreover, some characterizations of interval-valued -fuzzy bi-ideals are described. It is shown that an interval-valued -fuzzy bi-ideal is an interval-valued fuzzy bi-ideal by imposing a condition on interval-valued fuzzy subset. Finally, the concept of implication-based interval-valued fuzzy bi-ideals, characterizations of an interval-valued fuzzy bi-ideal and an interval-valued -fuzzy bi-ideal are considered.Â
References
L. A. Zadeh. 1965. Fuzzy Sets. Information and Control. 8(3): 338-353.
N. Kuroki. 1980. Fuzzy bi-ideals in Semigroups. Commentarii mathematici Universitatis Sancti Pauli Rikkyo Daigaku sugaku zasshi. 28(1): 17-21.
N. Kuroki. 1981. On Fuzzy Ideals and Fuzzy bi-ideals in Semigroups. Fuzzy Sets and Systems. 5(2): 203-215.
N. Kuroki. 1991. On Fuzzy Semigroups. Information Sciences. 53(3): 203-236.
J. N. Mordeson, D. S. Malik, N. Kuroki. 2003. Fuzzy Semigroups. Vol. 131. Springer.
J. N. Mordeson, D. S. Malik. 2002. Fuzzy Automata and Languages: Theory and Applications. CRC Press.
V. Murali. 2004. Fuzzy Points of Equivalent Fuzzy Sub Sets. Information Sciences. 158: 277-288.
P. Pao-Ming, Y. Liu. 1980. Fuzzy topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence. Journal of Mathematical Analysis and Applications. 76(2): 571-599.
S. K. Bhakat, P Das. 1992. On the Definition of a Fuzzy Subgroup. Fuzzy sets and Systems. 51(2): 235-241.
S. K. Bhakat, P. Das. 1996. -fuzzy Subgroup. Fuzzy Sets and Systems. 80(3): 359-368.
Y. B. Jun, S. Z. Song. 2006. Generalized Fuzzy Interior Ideals in Semigroups. Information Sciences. 176(20): 3079-3093.
O. Kazanci, S. Yamak. 2008. Generalized Fuzzy bi-ideals of Semigroups. Soft Computing. 12(11): 1119-1124.
M. Shabir, Y. B. Jun, N. Yasir. 2010. Characterizations of Regular Semigroups by -fuzzy Ideals. Computers & Mathematics with Applications. 59(1): 161-175.
Y. B. Jun, K. J. Lee, C. H. Park. 2010. New Types of Fuzzy Ideals in BCK/BCI-algebras. Computers & Mathematics with Applications. 60(3): 771-785.
M. Shabir, A. Khan. 2011. Fuzzy Quasi-ideals of Ordered Semigroups. Bull. Malays. Math. Sci. Soc.(2). 34: 87-102.
Y. Yin, J. Zhan. 2012. The Characterization of Ordered Semigroups in Terms of Fuzzy Soft Ideals. Bull. Malays. Math. Sci. Soc. (2). 35(4): 997-1015.
B. Davvaz, A. Khan. 2011. Characterizations of Regular Ordered Semigroups in Terms of -fuzzy Generalized bi-ideals. Information sciences. 181(9): 1759-1770.
B. Davvaz, A. Khan, N. H. Sarmin, H. Khan. 2013. More General Forms of Interval Valued Fuzzy Filters of Ordered Semigroups. International Journal of Fuzzy Systems. 15(2): 110-126.
Y. B. Jun, A. Khan, M. Shabir. 2010. Ordered Semigroups Characterized by their -fuzzy bi-ideals. Bull. Malays. Math. Sci. Soc.(2). 32(3): 391-408.
A. Khan, Y. B. Jun, N. H. Sarmin, F. M. Khan. 2012. Ordered Semigroups Characterized by -fuzzy Generalized bi-ideals. Neural Computing and Applications. 21(1): 121-132.
A. Khan, Y. B. Jun, N. H. Sarmin, H. Khan. 2013. Interval-valued Fuzzy Generalized Bi-ideals of Ordered Semigroups Redefined. World Applied Sciences Journal. 27(12): 1737-1751.
K. Niovi, M. Tsingelis. 2002. Fuzzy Sets in Ordered Groupoids. Semigroup Forum. 65: 128-132.
A. Khan, Y. B. Jun, M. Shabir. 2013. Ordered Semigroups Characterized by Interval Valued -fuzzy bi-ideals. Journal of Intelligent and Fuzzy Systems. 25(1): 57-68.
M. Ying. 1991. A New Approach for Fuzzy Topology (I). Fuzzy sets and Systems. 39(3): 303-321.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.