Synthesis of Cu2O and ZnO Nanowires and their Heterojunction Nanowires by Thermal Evaporation: A Short Review

Authors

  • Muhammad Arif Khan Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Samsudi Sakrani Ibnu Sina Institute for Fundamental Science Studies, Building N31, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Syahida Suhaima Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Yussof Wahab UTM Razak School of Engineering and Advanced Technology Universiti Technologi Malaysia Kuala Lumpur Level 7,Razak Tower Jalan Semarak 54100 Kuala Lumpur Malaysia
  • Rosnita Muhammad Sustainability Research Alliance, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia

DOI:

https://doi.org/10.11113/jt.v71.3861

Keywords:

Thermal evaporation, Heterojunction, Cu2O Nanowires, ZnO Nanowires.

Abstract

One dimensional metal oxide semiconductor nanowires of copper (I) oxide (Cu2O), zinc oxide (ZnO), and their heterojunction nanowires possess remarkable physical and chemical properties. ZnO and Cu2O areattractive because the metals are abundant on earth, inexpensive, nontoxic.Moreover, these oxides have useful optical and electrical properties suitable for a wide variety of electrical devices, because their electrical conduction can be predictably controlled by doping. We here restrict the disscussion using a Hot Tube Vacuum Thermal Evaporation. The NWs in these devices will be studied by physical vapor deposition known as vapor-liquid-solid (VLS). Therefore, we explore conventional methods, particularly the VLS of growing ZnO and Cu2O nanowires which are assisted by the catalyst.  In this short review, we report the individual and combined (Cu2O/ZnO) junction nanowires by PVD method.  The main advantages of these composite nanowires are the natural p-n characteristics, the broad light absorption, the high sensitivity to humidity changes, and the fast dynamic response. The combination of all characteristics offered by Cu2O/ZnO nanowires can enable the fabrication of diverse sensing devices, and photovoltaic solar cells.

References

P. Yang, R. Yan, and M. Fardy. 2010. Nano Lett. 10: 1529.

S. Dhara, and P. K. Giri. 2013. Reviews in Nanoscience and Nanotechnology. 2(3): 147–170.

C. Jagadish, L. Geelhaar, S. GradeÄak. 2013. Phys. Status Solidi RRL 7(10): 683–684.

M. Sakurai, Y.G. Wang, T. Uemura, and M. Aono. 2009. Nanotechnol. 20: 155203.

J. Johansson and K.A. Dick. 2011. CrystEngComm. 13: 7175.

S.D. Darvish, and H.A. Atwater. 2011. Journal of Crystal Growth. 319(1): 39–43.

L.C. Olsen, R.C. Bohara, and M.W.Urie. 1979. Applied Physics Letters. 34(1): 47–49.

D.L.S. Valladares, L. Salinas, D.H. Dominguez, A.B. Najarro, D.A. Khondaker, et al. 2012. Thin Solid Films. 520(20): 6368–6374.

J. Ghijsen, L. Tjeng, J. Vanelp, H. Eskes, J. Westerink, et al. 1988. Phys Rev B.38: 11322–30.

D. Singh, O. Srivastava. 2009. J Nanosci Nanotechno.9: 5345–50.

F. Patolsky, C. Lieber. 2005. Materials Today. 8: 20–8.

M. Rahman, A. Ahammad, J. Jin, S. Ahn, J. Lee. 2010. Sensors-Base 10: 4855–86.

J. Liang, N. Kishi, T. Soga, and T. Jimbo. 2011. Journal of Nanomaterials. 1–8.

J. Liang, N. Kishi, T. Soga, and T. Jimbo, and M. Ahmed. 2012. M. Thin Solid Films. 520(7): 2679–2682.

J.B. Forsyth, S. Hull. 1991. Condensed Matter. 3: 5257.

O. Madelung. 2004. Semiconductors data handbook. Berlin: Springer.

S.K. Baek, K.R. Lee, and H.K. Cho. 2013. Journal of Nanomaterials. 1–7.

M. Sakurai, Y.G. Wang, T. Uemura, and M. Aono. 2009. Nanotechnol. 20: 155203.

L. Wang, X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi. 2005. Applied Physics Letters. 86 (2): 024108.

J.S. Wang, C.S. Yang, P.I. Chen et al. 2009. Applied Physics A. 97 (3): 553–557.

L.C. Tien, S.J. Pearton, D.P. Norton, and F. Ren. 2008. Journal of Materials Science. 43 (21): 6925–6932.

K. Kitamura, T. Yatsui, M. Ohtsu, and G.C. Yi. Nanotechnology. 19 (17): 175305.

B. Liu and H.C. Zeng. 2003. Journal of the American Chemical Society. 125(15): 4430–4431.

G. An, Z. Sun, Y. Zhang et al. 2011.Journal of Nanoscience and Nanotechnology. 11: 1252–1258.

M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono. 2009. Nanotechnol. 20: 155203

H. Michael, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang. 2001. Adv. Mater. 13(2): 1356.

S. Sakrani, P.O. Amin, and S. Suhaimi. 2013. Malaysian Journal of Fundamental and Applied Sciences. 9(4): 201–205.

S. Suhaimi, S. Sakrani, T. Dorji and A.K. 2014. Ismail. Nanoscale Research Letters. 9:256

T.J. Hsueh, C. L. Hsu, S.J. Chang, P.W. Guo, J.H. Hsieh, and I.C. Chen. 2007. Scripta Materialia. 57(1): 53–56.

R.S. Wagner, W.C. Ellis. 1964. Appl. Phys. Lett. 4: 89.

Y. Sonia and C. Jimenez. 2006. Site Specific Nanowire Growth, National Nanotechnology Infrastructure Network.

B.S. Kim, J.M. Yoo, J. T. Park and J.C. Lee. 2006. Materials Transactions. 47(9): 2421–2426.

Kouklin. 2008. Adv. Matter. 20: 2190–2194.

S.Y. Kuo and H.I. Lin. 2014. Nanoscale Research Letters. 9:70.

X.Y. Kong, and Z.L. Wang. 2003. Nano Lett. 3 (12): 1625–1631.

N. Wang, Y. Cai, and R.Q. Zhang. 2008. Materials Science and Engineering R. 60:1–51

Downloads

Published

2014-12-30

How to Cite

Synthesis of Cu2O and ZnO Nanowires and their Heterojunction Nanowires by Thermal Evaporation: A Short Review. (2014). Jurnal Teknologi (Sciences & Engineering), 71(5). https://doi.org/10.11113/jt.v71.3861