Analysis Methods of EEG Signals: A Review in EEG Application for Brain Disorder

Authors

  • Faridah Abd Rahman Center for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Mohd Fauzi Othman Center for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Nurul Aimi Shaharuddin Center for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v72.3886

Keywords:

autism, cerebral palsy, schizophrenia, parkinson, multiple sclerosis

Abstract

The electroencephalograph (EEG) is a medical modality that plays crucial roles in detecting, displaying and recording electrical activity in the brain. This paper reviews the analysis method of EEG signal for common diseases in Malaysia which are autism, Cerebral Palsy (CP), Parkinson and schizophrenia from Malaysian and worldwide research paper that has been published. Fast Fourier Transform, Short Time Fourier Transform (STFT) and event-related potential (ERP) are some of the techniques used in analyzing EEG signal were discussed in this paper. It can be concluded that EEG plays its role as a detection tool to detect the disease in the early stage, rehabilitation, classification or as an assistive tool for the patient according to the needs of the diseases.

References

Carr, J. J., Brown, J. M. 2000. Instrumentation For Measuring Brain Function. Introduction to Biomedical Equipment Technology. Fourth. Prentice Hall. 369–395.

Rizzo, D. C. 2010. The Nervous System, The Brain, Cranial Nerves, Autonomic Nervous System and The Special Senses. Fundamentals Of Anatomy and Physiology. Third, Delmare Cancage Learning. 244–271.

Othman, M. and Wahab, A. Affective Face Processing Analysis in Autism using Electroencephalogram. 2010. 3rd International Conference on Information and Communication Technology for the Moslem World (ICT4M). 23–27.

Sanei, S. and Chambers, J. A. 2007. EEG Signal Processing. John Wiley & Sons, Incorporated.

Fisch, B. 1999. Fissch and Spehlmann’s EEG Primer: Basic Principles of Digital and Analog EEG. Third. Elsevier Ltd.

Al-Fahoum, A. S. and Al-Fraihat, A. A. 2014. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neurosci. 1–7.

Rashed-Al-Mahfuz, M., Islam, M. R., Hirose, K. and Molla, M. K. I. 2013. Artifact Suppression and Analysis of Brain Activities with Electroencephalography Signals. Neural Regen. Res. 8(16): 1500–1513.

Woestenberg, J. C., Vertaten, M. N. and Slangen, J.L. 1983. The Removal of the Eye Movement Artifact from the EEG by Regression Analysis in the Frequency Domain. Biol. Physiol. 16: 127–147.

Hyvarinen, A. 1999. Fast and Robust Fixed- Point Algorithm for Independent Component Analysis. IEEE Trans. Neural Networks. 10(3): 626–634.

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., Mckeown, M. J., Iragui, V. and Sejnowski, T. J. 1998. Extended ICA Removes Artifacts from Electroencephalographic Recordings. Proc. Adv. Neural Process. Syst. Conf. 10: 894–900.

Lanquart, J.-P., Dumont, M. and Linkowski. P. 2006. QRS Elimination on Full Night Sleep EEG. Med Eng. Phys. 28(2): 156–165.

Haykin, S. 1996. Adaptive Filter Theory. Third. New Jersey: Prentice-Hall, Inc.

Gou, L., Rivero D. and Pazos, A. 2010. Epileptic Seizure Detection Using Wavelet Transform Based on Approximate Entropy and Artificial Neural Networks. J. Neurosci. Methods. 193: 156–163.

Mosquera, C. G., Trigueros, A. and Franco, J. 2010. Newfeature extraction approach for epileptic EEG signal detection using time-frequency distribution. Med. Biol. Eng Comp. 48: 321–330.

Lehmanna, C., Koenig, T., Jelic,V., Prichep, L., John, R. Wahlund, L., Dodgee, Y. and Dierks, T. 2007. Application and cmparison of classification algorithms for recognition of alzheimer disease in electrical brain activity. J. Neurosci. Methods. 161: 342–350.

Lotte, F. Congedo, M., Lecuyer, A., Lamarche, F. and Arnaldi, B. 2007. A Review of Classification Algorithms for EEG Based Brain-Computer Interface. J. Neural Eng. 4: 1–13.

Sulaiman, N., Taib,M. N., Lias, S., Murat, Z. H., Aris, S. A. and Hamid, N. 2011. Novel mehtods for stress features identification using EEG signals. Int. J. Simul. Syst. Sci. Technol. 12: 27.

Dolah, J., Yahaya, W. A. J. W. and Chong, T. S. 2011. A Preliminary Investigation: Potential of Interactive Multimedia Learning Awareness (IMLA) in Enhancing Awareness of Autistic Characteristics among Parents and Society in Malaysia. Electron. J. Comput. Sci. Inf. Technol. 3(1): 19–25.

Coben, R., Clarke, A. R., Hudspeth, W. and Barry, R. J. 2008. EEG power and Coherence in Autistic Spectrum Disorder. Clin. Neurophysiol. 119(5): 1002–1009.

Ingham, A. K. 2008. Students, Professors Research Success of Autism Treatment Methods. Rafdford University. 1–2.

Behnam, H., Sheikhani, A., Mohammadi, M. R., Noroozian, M. and Golabi, P. 2007. Analyses of EEG Background Activity in Autism Disorders with Fast Fourier Transform and Short Time Fourier MEASURE. International Conference on Intelligent and Advanced Systems. 1240–1244.

Hoole, P. R. P., Pirapaharan, K., Basar, S. A., Ismail, R., Liyanage, D. L. D. A., Senanayake, S. S. H. M. U. and Hoole, S. R. H. 2012. Autism, EEG and Brain Electromagnetics Research. 2012 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). 541–543.

Sudirman, R., Saidin, S. and Safri, N. M. 2010. Study of Electroencephalography Signal of Autism and Down syndrome Children using FFT. IEEE Symposium on Industrial Electronics and Applications (ISIEA). 401–406.

Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y. and Sweeney, J. A. 2013. Resting State EEG Abnormalities in Autism Spectrum Disorders. J. Neurodev. Disord. 5(1):1–14.

Alhaddad, M. J., Kamel, M. I., Malibary, H. M., Ebtehal, A., Thabit, K., Dahlwi, F. and Hadi, A. A. 2012. Diagnosis Autism by Fisher Linear Discriminant Analysis FLDA via EEG. 4(2): 45–54.

Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M. and Golabi, P. 2008. Connectivity Analysis of Quantitative Electroencephalogram Background Activity in Autism Disorders with Short Time Fourier Transform and Coherence Values. Congress on Image and Signal Processing. 207–212.

Bosl, W., Tierney, A., Tager-Flusberg, H. and Nelson, C. 2011. EEG Complexity as a Biomarker for Autism Spectrum Disorder Risk. BMC Med. 9(1): 18.

Razali, N. and Wahab, A. 2011. 2D Affective Space Model (ASM) for Detecting Autistic Children. IEEE 15th International Symposium on Consumer Electronics (ISCE). 536–541.

Duffy, F. H., Shankardass,A., Mcanulty,G., B. and Als, H. 2013. The Relationship of Asperger ’ s Syndrome to Autism: A Preliminary EEG Coherence Study. BMC Med. 11: 175.

Lim, M. S. Y. and Wong, C. P. 2009. Impact of Cerebral Palsy on The Quality of Life in Patients and Their Families. Neurol. Asia. 14(1): 27–33.

Mijna, H. A. 2000. The Neuronal Group Selection Theory: Promising Principles for Understanding and Treating Developmental Motor Disorders. Dev. Med. Child Neurol. 42(10): 707–715.

Hundozi-Hysenaj, H. and Boshnjaku-Dallku, I. 2008. Epilepsy in Children with Cerebral Palsy. J. Pediatr. Neurol. 6(1): 43–46.

Rӧnnqvist, L. and Rӧsblad, B. 2007. Kinematic analysis of Unimanual Reaching and Grasping Movements in Children with Hemiplegic Cerebral Palsy. Clin. Biomech. 22(2): 165–175.

Rigoldi, C., Molteni, E., Rozbaczylo, C., Morante, M., Albertini, G., Bianchi, A. M. and Galli, M. 2012. Movement Analysis and EEG Recordings in Children with Hemiplegic Cerebral Palsy. Exp. brain Res. 223(4): 517–524.

Faria, B. M., Ua, D. Electrónica, D. and Reis, L. P. 2012. Cerebral Palsy EEG Signals Classification: Facial Expressions and Thoughts for Driving an Intelligent Wheelchair. IEEE 12th International Conference on Data Mining Workshop. 33–40.

Hadjipanayis, A., Hadjichristodoulou, C. and Youroukos, S. 1997. Epilepsy in Patients with Cerebral Palsy. Dev Med Child Neurlogy1. 39: 659–663.

Wallace, S. J. 2001. Epilepsy in cerebral palsy. Dev. Med. Child Neurol. 43(10): 713–717.

Thanasayan, A. 26-Nov-2009. The Lack of Understanding of the Implications of Parkinson’s Disease is Alarming. The Star.

Thanasayan, A. 21-Apr-2011. About Parkinson’s. The Star.

Han, C., Wang, J., Yi, G.-S. and Che, Y.-Q. 2013.Investigation of EEG abnormalities in the early stage of Parkinson’s disease. Cogn Neurodyn. 7(92): 351–359.

Yuvaraj, R., Murugappan, M., Ibrahim, N. M., Iqbal, M., Sundaraj, K., Mohamad, K., Palaniappan, R., Mesquita, E. and Satiyan, M. 2014. On the Analysis of EEG Power, Frequency and Asymmetry in Parkinson’s Disease during Emotion Processing. Behav. brain Funct. 10(1): 12.

Soikkeli, R., Partanen, J., Soininen, H., Pääkkönen, A. and Riekkinen Sr., P. 1991. Slowing of EEG in Parkinson’s Disease. Electroencephalogr. Clin. Neurophysiol. 79(3): 159–165.

Handojoseno, A. M. A., Shine, J. M., Nguyen, T. N., Tran, Y. S., Lewis, J. G. and Nguyen, H. T. 2012. The Detection of Freezing of Gait in Parkinson ’ s Disease Patients using EEG Signals Based on Wavelet Decomposition. 34th Annual International Conference. 69–72.

Palmer, S. J., Lee, P. W. H., Wang, Z. J., Au,W. L. and Keown, M. J. M. 2010. Theta, Beta but not Alpha Band EEG Connectivity has Impilcations for Dual Task Performance in Parkinsons Disease. Park. Relat. Disord. 16: 393–397.

Zamzam, R., Midin, M., Hooi, L. S., Yi, E. J., Ahmad, S. N., Azman, S. F., Borhanudin, M. S. and Radzi, R. S. 2011. Schizophrenia in Malaysian Families: A Study on Factors Associated with Quality of Life of Primary Family Caregivers. Int. J. Ment. Health Syst. 5(1): 16.

Nauert, R. 2011. EEG Test Measure Risk in Schizophrenia. Psych Central. http://psychcentral.com/news/2011/05/18/eeg-test-measures-risk-of-schizophrenia/26299.html. Accessed Jul 4, 2014.

Hoffman, R. E., Buchsbaum, M. S., Escobar, M. D., Makuch, R. W., Nuechterlein, K. H. and Guich, S. M. 1991. EEG Coherence of Prefrontal Areas in Normal and Schizophrenic Males during Perceptual Activation. Neuropsychiatry Clin. Neurosci. 3(2): 169–175.

Mann, K., Maier, W., Franke, P., Röschke, J. and Gänsicke, M. 1997. Intra- and Interhemispheric Electroencephalogram Coherence in Siblings Discordant for Schizophrenia and Healthy Volunteers. Biol Psychiatry. 42(8): 655–663.

Tikka, S. K., Nizamie, S. H., Das, B., Katshu, M. Z. U. H. and Goyal, N. 2013. Increased Spontaneous Gamma Power and Synchrony in Schizophrenia Patients Having Higher Minor Physical Anomalies. Psychiatry Res. 207(3): 164–172.

Schug, R. a., Yang, Y., Raine, A., Han, C., Liu, J. and Li, L. 2011. Resting EEG Deficits in Accused Murderers with Schizophrenia. Psychiatry Res. 194(1). 85–94.

Sun, Y., Farzan, F., Barr, M. S., Kirihara, K., Fitzgerald, P. B., Light, G. a and Daskalakis, Z. J. 2011. Gamma Oscillations in Schizophrenia: Mechanisms and Clinical Significance. Brain Res. 1413: 98–114.

Basar-Eroglu, C., Brand, A., Hildebrant, H., Kedzior, K. K., Mathes, B. and Schmiedt, C. 2007. Working Memory Related Gamma Oscillations in Schizoprenia Patients. Int. J. Psychophisiology. 64: 39–45.

Basar, E. and Guntekin, B. 2013. Review of Delta, Theta, Alpha, Beta and Gamma Response Oscillations in Neuropsychiatric Disorders. Clinical Neurophysiology. 62: 303–341.

Hall, M. H., Taylor, G., Sham, P., Schulze, K., Rijsdijk, F., Picchioni, M., Toulopoulou, T., Ettinger, U., Bramon, E., Murray, R. M. and Salisbury, D. F. 2011. The Early Auditory Gamma-Band Response is Heritable and a Putative Endophenotype of Schizophrenia. Schizophr. Bull. 37: 778–787.

Spencer, K. M., Niznikiewicz, M. A., Nestor, P. G., Shenton, M. E. and McCarley, R. W. 2009. Left Auditory Cortex Gamma Synchronization and Auditory Hallucination Symptoms in Schizophrenia. Bio Med Cent. Neurosci. 10: 85.

Downloads

Published

2015-01-05

How to Cite

Analysis Methods of EEG Signals: A Review in EEG Application for Brain Disorder. (2015). Jurnal Teknologi (Sciences & Engineering), 72(2). https://doi.org/10.11113/jt.v72.3886