SIMULATION STUDY ON THE ELECTRICAL PERFORMANCE OF EQUILIBRIUM THIN-BODY DOUBLE-GATE NANO-MOSFET

Authors

  • Chek Yee Ooi Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
  • Lim Soo King Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.11113/jt.v76.3892

Keywords:

Ballistic, classical, nanometer, temperature effects, wave nature, particle

Abstract

This paper presents a numerical simulation study for electrical characteristics of double-gate (DG) nano-MOSFET at equilibrium thin-body condition. The electrical characteristics which are studied include subband energy (including unprimed and primed subbands), 2D electron density at 77K and 300K ambient temperatures, transmission coefficient, average electron velocity and ballistic current. The ranges of silicon body thickness TSi are 1.0 nm, 1.5 nm and 2.0 nm. The electron transport models used in simulation tool covered quantum model and classical model. Simulation output data are also compared with theoretical discussion.

Author Biography

  • Chek Yee Ooi, Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
    A part time postgraduate student at Universiti Tunku Abdul Rahman.

References

Zhibin Ren. 2001. Nanoscale MOSFETs: Physics, Simulation and Design. Purdue University.

Xufeng Wang. 2010. NanoMOS 4.0: A Tool to Explore Ultimate Si Transistors and Beyond. Purdue University.

Prashant Subhash Damle. 2003. Nanoscale Device Modeling: From MOSFETs to Molecules. Purdue University.

Ramesh Venugopal. 2003. Modeling Quantum Transport in Nanoscale Transistors. Purdue University.

Xufeng Wang. NanoMOS 3.5 First Time User Guide. Network for Computational Nanotechnology (NCN). Purdue University.

Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark S. Lundstrom. 2003. NanoMOS 2.5: A Two-Dimensional Simulator for Quantum Transport in Double-gate MOSFETs. IEEE Transactions on Electron Devices. 50(9): 1914-1925.

Victor A. Sverdlov, Thomas J. Walls, Konstantin K. Likharev. 2003. Nanoscale Silicon MOSFETs: A Theoretical Study. IEEE Transactions on Electron Devices. 50(9): 1926-1933.

Sanjeet Kumar Sinha, Saurabh Chaudhury. 2012. Simulation and Analysis of Quantum Capacitance in Single-Gate MOSFET, Double-Gate MOSFET and CNTFET Devices for Nanometer Regime. IEEE 978-1-4673-4700-6/12.

V. C. Chan, T. M. Buehler, D. R. McCamey, A. J. Ferguson, D. J. Reilly, C. Yang, T. Hopf, A. S. Dzurak, A. R. Hamilton, D. N. Jamieson, R. G. Clark. 2005. Single-Electron Transistor Coupled to a Silicon Nano-MOSFET. Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems II. Proc. of SPIE Vol. 5650 0277-786X/05. doi: 10.1117/12.583293.

George, W. Hanson. 2008. Fundamentals of Nanoelectronics. New York. Pearson International Edition.

Anisur Rahman, Jing Guo, Supriyo Datta, Mark S. Lundstrom. 2003. Theory of Ballistic Nanotransistors. IEEE transactions on Electron Devices. 50(9): 1853-1864.

Mark Lundstrom. 2005. Notes on the Ballistic MOSFET. Network for Computational Nanotechnology and Purdue University.

Huang, J. Z., Chew, W. C., Tang, M., Jiang, L. 2012. Efficient Simulation and Analysis of Quantum Ballistic Transport in Nanodevices with AWE. IEEE Transactions on Electron Devices. 59(2): 468-476.

Vandana Kunari, Manoj Saxena, R. S. Gupta, Mridula Gupta. 2012. Temperature Dependent Drain Current Model for Gate Stack Insulated Shallow Extension Silicon On Nothing (ISESON) MOSFET for Wide Operating Temperature Range. Microelectronics Reliability. 52: 974-983. Elsevier. doi: 10.1016/j.microrel.2011.12.021.

M. P. Anantram, M. S. Lundstrom, D. E. Nikonov. 2007. Modeling of Nanoscale Devices. University of Waterloo, Purdue University, Intel Corporation.

Ismail Saad, Khairul A. M., Nurmin Bolong, Abu Bakar A. R, Vijay K. Arora. Computational Analysis of Ballistic Saturation Velocity in Low-Dimensional Nano-MOSFET. IJSSST. 12(3). ISSN: 1473-8031 (print).

M. De Michielis, D. Esseni, F. Driussi. Trade-off between Electron Velocity and Density of States in Ballistic Nano-MOSFETs. Google.

Raphael Clerc, Gerard Ghibaudo. Analytical Models and Electrical Characterization of Advanced MOSFETs in the Quasi Ballistic Regime. International Journal of High Speed Electronics and Systems. World Scientific Publishing Company.

Downloads

Published

2015-08-26

Issue

Section

Science and Engineering

How to Cite

SIMULATION STUDY ON THE ELECTRICAL PERFORMANCE OF EQUILIBRIUM THIN-BODY DOUBLE-GATE NANO-MOSFET. (2015). Jurnal Teknologi, 76(1). https://doi.org/10.11113/jt.v76.3892