SIMULATION STUDY ON THE ELECTRICAL PERFORMANCE OF EQUILIBRIUM THIN-BODY DOUBLE-GATE NANO-MOSFET
DOI:
https://doi.org/10.11113/jt.v76.3892Keywords:
Ballistic, classical, nanometer, temperature effects, wave nature, particleAbstract
This paper presents a numerical simulation study for electrical characteristics of double-gate (DG) nano-MOSFET at equilibrium thin-body condition. The electrical characteristics which are studied include subband energy (including unprimed and primed subbands), 2D electron density at 77K and 300K ambient temperatures, transmission coefficient, average electron velocity and ballistic current. The ranges of silicon body thickness TSi are 1.0 nm, 1.5 nm and 2.0 nm. The electron transport models used in simulation tool covered quantum model and classical model. Simulation output data are also compared with theoretical discussion.
References
Zhibin Ren. 2001. Nanoscale MOSFETs: Physics, Simulation and Design. Purdue University.
Xufeng Wang. 2010. NanoMOS 4.0: A Tool to Explore Ultimate Si Transistors and Beyond. Purdue University.
Prashant Subhash Damle. 2003. Nanoscale Device Modeling: From MOSFETs to Molecules. Purdue University.
Ramesh Venugopal. 2003. Modeling Quantum Transport in Nanoscale Transistors. Purdue University.
Xufeng Wang. NanoMOS 3.5 First Time User Guide. Network for Computational Nanotechnology (NCN). Purdue University.
Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark S. Lundstrom. 2003. NanoMOS 2.5: A Two-Dimensional Simulator for Quantum Transport in Double-gate MOSFETs. IEEE Transactions on Electron Devices. 50(9): 1914-1925.
Victor A. Sverdlov, Thomas J. Walls, Konstantin K. Likharev. 2003. Nanoscale Silicon MOSFETs: A Theoretical Study. IEEE Transactions on Electron Devices. 50(9): 1926-1933.
Sanjeet Kumar Sinha, Saurabh Chaudhury. 2012. Simulation and Analysis of Quantum Capacitance in Single-Gate MOSFET, Double-Gate MOSFET and CNTFET Devices for Nanometer Regime. IEEE 978-1-4673-4700-6/12.
V. C. Chan, T. M. Buehler, D. R. McCamey, A. J. Ferguson, D. J. Reilly, C. Yang, T. Hopf, A. S. Dzurak, A. R. Hamilton, D. N. Jamieson, R. G. Clark. 2005. Single-Electron Transistor Coupled to a Silicon Nano-MOSFET. Micro- and Nanotechnology: Materials, Processes, Packaging, and Systems II. Proc. of SPIE Vol. 5650 0277-786X/05. doi: 10.1117/12.583293.
George, W. Hanson. 2008. Fundamentals of Nanoelectronics. New York. Pearson International Edition.
Anisur Rahman, Jing Guo, Supriyo Datta, Mark S. Lundstrom. 2003. Theory of Ballistic Nanotransistors. IEEE transactions on Electron Devices. 50(9): 1853-1864.
Mark Lundstrom. 2005. Notes on the Ballistic MOSFET. Network for Computational Nanotechnology and Purdue University.
Huang, J. Z., Chew, W. C., Tang, M., Jiang, L. 2012. Efficient Simulation and Analysis of Quantum Ballistic Transport in Nanodevices with AWE. IEEE Transactions on Electron Devices. 59(2): 468-476.
Vandana Kunari, Manoj Saxena, R. S. Gupta, Mridula Gupta. 2012. Temperature Dependent Drain Current Model for Gate Stack Insulated Shallow Extension Silicon On Nothing (ISESON) MOSFET for Wide Operating Temperature Range. Microelectronics Reliability. 52: 974-983. Elsevier. doi: 10.1016/j.microrel.2011.12.021.
M. P. Anantram, M. S. Lundstrom, D. E. Nikonov. 2007. Modeling of Nanoscale Devices. University of Waterloo, Purdue University, Intel Corporation.
Ismail Saad, Khairul A. M., Nurmin Bolong, Abu Bakar A. R, Vijay K. Arora. Computational Analysis of Ballistic Saturation Velocity in Low-Dimensional Nano-MOSFET. IJSSST. 12(3). ISSN: 1473-8031 (print).
M. De Michielis, D. Esseni, F. Driussi. Trade-off between Electron Velocity and Density of States in Ballistic Nano-MOSFETs. Google.
Raphael Clerc, Gerard Ghibaudo. Analytical Models and Electrical Characterization of Advanced MOSFETs in the Quasi Ballistic Regime. International Journal of High Speed Electronics and Systems. World Scientific Publishing Company.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.