A Review of Palm Oil Biomass as a Feedstock for Syngas Fuel Technology

Authors

  • Nor Afzanizam Samiran Department of Aeronautical Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohammad Nazri Mohd Jaafar Department of Aeronautical Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Cheng Tung Chong Department of Aeronautical Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ng Jo-Han Energy Technology Research Group, Engineering Sciences, University of Southampton, SO17 1BJ, Hampshire, UK

DOI:

https://doi.org/10.11113/jt.v72.3932

Keywords:

Syngas, palm oil biomass, oil palm frond (OPF), empty fruit bunch (EFB), palm kernel shell (PKS)

Abstract

Fossil fuel as the world dominated energy source is depleting and posing environmental issue. Therefore, Synthesis gas (or syngas) which serve environmental clean fuel characteristic is expected to play a major role as one of the potential renewable energy in the future. Syngas, produced from solid feedstock (such as biomass, coal, refinery residual, organic waste and municipal waste) via gasification process can be used directly as fuel for power generation. Besides, syngas also acts as key intermediary to produce transport fuel depending on their quality. The chosen feedstock for syngas production determines the composition and heating value of the syngas produced and hence will be reviewed in general. This paper then review critically palms biomass as the potential source of feedstock for syngas production, as it is widely accessible in the context Malaysia. Palm biomass presents a solution that is sustainable and eco-friendly that is yet to be fully capitalized in the palm oil industry.  Some of the palm biomass including oil palm frond (OPF), empty fruit bunch (EFB) and palm kernel shell (PKS) are identified to contain high heating value which indicate their potential use as solid biomass feedstock for syngas production.

References

Fu J, Tang C, Jin W, Dinh L, Huang Z, Zhang Y. 2013. Study on Laminar Flame Speed and Flame Structure of Syngas with Varied Compositions Using OH-PLIF and Spectrograph. Int J Hydrogen Energy. 38(1): 6, 3, 6–1, 6, 4, 3.

He F, Li Z, Liu P, Ma L, Pistikopoulos EN. 2012. Operation Window and Part-Load Performance Study of a Syngas Fired Gas Turbine. Appl Energy. 89(1):133–141. doi:10.1016/j.apenergy.2010.11.044.

Shih H-Y, Hsu J-R. A. 2011. Computational Study of Combustion and Extinction of Opposed-Jet Syngas Diffusion Flames. Int J Hydrogen Energy. 36(24):15868–15879. doi:10.1016/j.ijhydene.2011.09.037.

Speight, J. G. 2014. Gasification of Unconventional Feedstocks. Elsevier Inc.1–29.

Emami-Taba L., Irfan, M. F., Wan Daud, W. M. A., Chakrabarti, M. H. 2013. Fuel Blending Effects on The Co-Gasification of Coal and Biomass–A Review. Biomass and Bioenergy. 57: 249–263. doi:10.1016/j.biombioe..02.043.

Pudasainee, D., Paur, H., Fleck, S., Seifert, H. 2014. Trace Metals Emission in Syngas From Biomass Gasi Fi Cation. Fuel Process Technol. 120: 54–60.

Foo-Yuen N., Foong-Kheong, Y., Yusof, B., Kalyana, S. A 2011. Renewable Future Driven with Malaysian Palm Oil-based Green Technology. J Oil Palm Environ Malaysian Palm Oil Counc. January): 1–7. doi:10.5366/jope.2011.01.

Darshini, D., Dwivedim, P., Glenk, K. 2013. Capturing Stakeholders ´ Views on Oil Palm-Based Biofuel and Biomass Utilisation In Malaysia. Energy Policy. 62: 1128–1137.

Ng, W. P. Q., Lam, H. L., Ng, F. Y., Kamal, M., Lim, J. H. E. 2012. Waste-to-wealth: Green Potential from Palm Biomass in Malaysia. J Clean Prod. 34(September 2011): 57–65. doi:10.1016/j.jclepro.2012.04.004.

Umar, M. S., Jennings, P., Urmee, T. 2013. Strengthening the Palm Oil Biomass Renewable Energy industry in Malaysia. Renew Energy. 60: 107–115. doi:10.1016/j.renene.2013.04.010.

Umar, M. S., Jennings, P., Urmee, T. 2014. Generating renewable Energy from Oil Palm Biomass in Malaysia: The Feed-in Tariff policy framework. Biomass and Bioenergy. 62: 37–46.

Abnisa, F., Arami-Niya, A., Wan Daud W. M. a., Sahu, J. N., Noor, I. M. 2013. Utilization of Oil Palm Tree Residues to Produce Bio-Oil and Bio-Char Via Pyrolysis. Energy Convers Manag.76: 1073–1082. doi:10.1016/j.enconman..08.038.

Cheng, S. F., Nor, L. M., Chuah, C. H. 2011. Microwave Pretreatment: A Clean and Dry Method for Palm Oil Production. Ind Crops Prod. 34(1): 967–971. doi:10.1016/j.indcrop.2011.03.002.

Guangul, F. M., Sulaiman, S. A., Ramli, A. 2012. Gasifier Selection, Design and Gasification of Oil Palm Fronds with Preheated and Unheated Gasifying Air. Bioresour Technol. 126: 224–232.

Saili Nur, Shafawati Shafiquzzaman, S. 2013. Composting of Oil Palm Fi Bres and Trichoderma Spp. as the Biological Control Agent: A Review. Int Biodeterior Biodegradation. 85: 243–253.

Er, A. C., Abd. Rahim, M. N., Katiman, R. 2011. Palm Oil Milling Wastes and Sustainable Development. Am J Appl Sci 8. 8(5): 436–440.

Hansen, U. E., Nygaard, I. 2014. Sustainable Energy Transitions in Emerging Economies: The Formation of a Palm Oil Biomass Waste-To-Energy Niche in Malaysia 1990–2011. Energy Policy. 66: 666–676. doi:10.1016/j.enpol.2013.11.028.

Sulaiman, F., Abdullah, N., Gerhauser, H., Shariff a. 2011. An Outlook of Malaysian Energy, Oil Palm Industry and Its Utilization of Wastes as Useful Resources. Biomass and Bioenergy. 5. doi:10.1016/j.biombioe.2011.06.018.

Erlich, C. Fransson, T. H. 2010. Downdraft Gasification of Pellets Made of Wood, Palm-Oil Residues Respective Bagasse: Experimental study. Appl Energy. 88(3): 899–908. doi:10.1016/j.apenergy. 08.028.

Gabrielle, B., Bamière, L., Caldes, N., et al. 2014. Paving the Way for Sustainable Bioenergy in Europe: Technological Options and Research Avenues for Large-Scale Biomass Feedstock Supply. Renew Sustain Energy Rev. 33: 11–25. doi:10.1016/j.rser.2014.01.050.

Mekhilef, S., Saidur, R., Safari a., Mustaffa, W. E. S. B. 2011. Biomass Energy in Malaysia: Current State and Prospects. Renew Sustain Energy Rev. 15(7): 3360–3370. doi:10.1016/j.rser.2011.04.016.

Sovacool, B. K., Drupady, I. M. 2011. Examining the Small Renewable Energy Power (SREP) Program in Malaysia. Energy Policy. 39(11): 7244–7256. doi:10.1016/j.enpol.2011.08.045.

Shamsuddin, A. H. 2012. Development of Renewable Energy in Malaysia-Strategic Initiatives for Carbon Reduction in the Power Generation Sector. Procedia Eng. 49: 384–391. doi:10.1016/j.proeng.2012.10.150.

Md. S. R, Sandra, D. E., Erin, S., Krishna, J. A. 2014. Supply Chain Network Design Model for Biomass Co-Firing in Coal-Fired Power Plants. Transp Res Part E. 61: 115–134.

Raman, P., Ram, N. K. 2013. Performance Analysis of an Internal Combustion Engine Operated on Producer Gas, In Comparison With The Performance of The Natural Gas and Diesel Engines. Energy. 63: 317–333.

Pantaleo, A. M., Camporeale, S., Shah, N. 2013. Natural Gas–biomass Dual Fuelled Microturbines: Comparison of Operating Strategies in The Italian Residential Sector. Appl Therm Eng. doi:10.1016/j.applthermaleng.2013.10.056.

Economic Transformation Programmed: A roadmap for Malaysia. 2010.

Mohammed, M. a. a., Salmiaton, a., Wan Azlina, W. a. K. G., Mohammad Amran, M. S., Fakhru’l-Razi a., Taufiq-Yap, Y. H. 2011. Hydrogen Rich Gas From Oil Palm Biomass as a Potential Source of Renewable Energy in Malaysia. Renew Sustain Energy Rev. 15(2): 1258–1270. doi:10.1016/j.rser.2010.10.003.

Ashnani, M. H. M., Johari, A., Hashim, H., Hasani, E. 2014. A Source of Renewable Energy in Malaysia, Why Biodiesel? Renew Sustain Energy Rev. 35: 244–257. doi:10.1016/j.rser.2014.04.001.

Mohammed M a a, Salmiaton a, Wan Azlina W a KG, Mohamad Amran MS. Gasification of oil palm empty fruit bunches: a characterization and kinetic study. Bioresour Technol. 2012;110:628–36. doi:10.1016/j.biortech.2012.01.056.

Bahng, M-K, Mukarakate, C., Robichaud, D. J., Nimlos, M. R. 2009. Current Technologies for Analysis of Biomass Thermochemical Processing: A Review. Anal Chim Acta. 651(2): 117–38. doi:10.1016/j.aca.2009.08.016.

Saidur, R., Abdelaziz, E. a., Demirbas, a., Hossain, M. S., Mekhilef, S. 2011. A Review on Biomass as a Fuel For Boilers. Renew Sustain Energy Rev. 15(5): 2262–2289. doi:10.1016/j.rser.2011.02.015.

Sluiter, J. B., Ruiz, R. O., Scarlata, C. J., Sluiter, A. D. 2010. Templeton DW. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods. J Agric Food Chem. 58(16): 9043–53. doi:10.1021/jf1008023.

Mondal, P., Dang, G. S., Garg, M. O. 2011. Syngas Production Through Gasification and Cleanup for Downstream Applications—Recent Developments. Fuel Process Technol. 92(8): 1395–1410. doi:10.1016/j.fuproc.2011.03.021.

Chiesa, S., Gnansounou, E. 2014. Use of Empty Fruit Bunches from the Oil Palm for Bioethanol Production: A Thorough Comparison Between Dilute Acid and Dilute Alkali Pretreatment. Bioresour Technol. 159: 355–64. doi:10.1016/j.biortech.2014.02.122.

Shafie, S. M., Mahlia, T. M. I., Masjuki, H. H., Ahmad-Yazid a. 2012. A Review on Electricity Generation Based on Biomass Residue in Malaysia. Renew Sustain Energy Rev. 16(8): 5879–5889. doi:10.1016/j.rser.2012.06.031.

Hansen, U. E., Nygaard, I. 2014. Sustainable Energy Transitions in Emerging Economies: The Formation of a Palm Oil Biomass Waste-To-Energy Niche in Malaysia 1990–2011. Energy Policy. 66: 666–676. doi:10.1016/j.enpol.2013.11.028.

Sisbudi, S., Grundman, P., Hang, L., et al. 2013. Energy Balances, Greenhouse Gas Emissions and Economics of Biochar Production from Palm Oil Empty Fruit Bunches. Resour, Conserv Recycl. 77: 108–115.

Demirbas, A. 2010. Fuels from Biomass. In: Biorefineries For Biomass Upgrading Facilities. 33–73.

Omar, R., Idris, a., Yunus, R., Khalid, K., Aida, Isma, M. I. 2011. Characterization of Empty Fruit Bunch for Microwave-assisted Pyrolysis. Fuel. 90(4): 1536–1544. doi:10.1016/j.fuel.2011.01.023.

Abdullah, N., Sulaiman, F. 2013. The Oil Palm Wastes in Malaysia. In: Biomass Now–Sustainable Growth and Use. Intech :89–92.

Parshetti, G. K., Hoekman, S. K., Balasubramanian, R. 2013. Chemical, Structural and Combustion Characteristics of Carbonaceous Products Obtained by Hydrothermal Carbonization of Palm Empty Fruit Bunches. Bioresour Technol. 135: 683–689.

May, C., Phaik, P., Ti, T., Eng, C., Kit, C. 2013. Biogas from Palm Oil Mill Ef Fl Uent (POME): Opportunities and Challenges From Malaysia’s Perspective. Renew Sustain Energy Rev. 26: 717–726.

Abnisa, F., Daud, W. M. a. W., Husin, W. N. W., Sahu, J. N. 2011. Utilization Possibilities of Palm Shell as a Source of Biomass Energy In Malaysia by Producing Bio-oil in Pyrolysis Process. Biomass and Bioenergy. 35(5): 1863–1872. doi:10.1016/j.biombioe.2011.01.033.

Ninduangdee, P., Kuprianov, V. I. 2013. Study on Burning Oil Palm Kernel Shell in a Conical Fluidized-bed Combustor Using Alumina as the Bed Material. J Taiwan Inst Chem Eng. 44: 1045–1053.

Kristiani, A., Abimanyu, H., Setiawan, a. H., Aulia, F. 2013. Effect of Pretreatment Process by Using Diluted Acid to Characteristic of oil Palm’s Frond. Energy Procedia. 32: 183–189. doi:10.1016/j.egypro.2013.05.024.

Mekbib, S., Anwar, S., Yusup, S. 2013. Syngas Production from Downdraft Gasification of Oil Palm Fronds. Energy. 61: 491–501.

Bakar, M. S. A. Titiloye, J. O. 2013. Catalytic Pyrolysis of Rice Husk for Bio-Oil Production. J Anal Appl Pyrolysis. 103: 362–368.

Senapati, P. K., Behera, S. 2012. Experimental Investigation on an Entrained Flow Type Biomass Gasification System Using Coconut Coir Dust as Powdery Biomass Feedstock. Bioresour Technol. 117: 99–106. doi:10.1016/j.biortech.2012.04.049.

Burhenne, L., Messmer, J., Aicher, T., Laborie, M. 2013. The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. J Anal Appl Pyrolysis. 101: 177–184.

Gottipati, R., Mishra, S. 2011. A Kinetic Study on Pyrolysis and Combustion Characteristics of Oil Cakes: Effect of Cellulose and Lignin Content. J Fuel Chem Technol. 39(4): 265–270. doi:10.1016/S1872-5813(11)60021-2.

Garcia-Maraver, a, Salvachúa, D., Martínez, M. J., Diaz, L. F., Zamorano, M. 2013. Analysis of the Relation Between the Cellulose, Hemicellulose and Lignin Content and the Thermal Behavior of Residual Biomass from Olive Trees. Waste Manag. 33(11): 2245–9. doi:10.1016/j.wasman.2013.07.010.

Woolcock, P. J., Brown, R. C. 2013. A Review of Cleaning Technologies for Biomass-derived Syngas. Biomass and Bioenergy. 52: 54–84. doi:10.1016/j.biombioe.2013.02.036.

Nipattummakul, N., Ahmed, II., Gupta, A. K., Kerdsuwan, S. 2011. Hydrogen and Syngas Yield from Residual Branches of Oil Palm Tree Using Steam Gasification. Int J Hydrogen Energy. 36(6): 3835–3843. doi:10.1016/j.ijhydene.2010.04.102.

Lahijani, P., Zainal, Z. A. 2011. Gasification of Palm Empty Fruit Bunch in a Bubbling Fluidized Bed: A Performance and Agglomeration Study. Bioresour Technol. 102(2): 2068–76. doi:10.1016/j.biortech.2010.09.101.

Khan, Z., Yusup, S., Melati, M. 2013. Integrated catalytic adsorption (ICA) Steam Gasification System for Enhanced Hydrogen Production Using Palm Kernel Shell. Int J Hydrogen Energy. 39: 3286–3293.

Alipour, R., Yusup, S., Uemura, Y., et al. 2014. Syngas Production From Palm Kernel Shell and Polyethylene Waste Blend in Fluidized Bed Catalytic Steam Co-GasifiCation Process. Energy. 1–5.

Bazmi, A. A., Zahedi, G., Hashim, H. 2011. Progress and Challenges in Utilization of Palm Oil Biomass as Fuel for Decentralized Electricity Generation. Renew Sustain Energy Rev. 15(1): 574–583. doi:10.1016/j.rser.2010.09.031.

Lim, X. Y., Andrésen, J. M. 2011. Pyro-catalytic Deoxgenated Bio-Oil from Palm Oil Empty Fruit Bunch and Fronds with Boric Oxide in a Fixed-Bed Reactor. Fuel Process Technol. 92(9): 1796–1804. doi:10.1016/j.fuproc.2011.04.033.

Downloads

Published

2015-01-11

How to Cite

A Review of Palm Oil Biomass as a Feedstock for Syngas Fuel Technology. (2015). Jurnal Teknologi (Sciences & Engineering), 72(5). https://doi.org/10.11113/jt.v72.3932