Evaluating The Performance for DCF Protocol and EDCA Protocol

Authors

  • Ahmed Abu-Khadrah Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
  • Zahriladha Zakaria Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia
  • Mohdazlishah Othman Centre for Telecommunication Research and Innovation (CeTRI), Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia

DOI:

https://doi.org/10.11113/jt.v72.3940

Keywords:

DCF, EDCA, QOS

Abstract

Nowadays supporting quality of service (QOS) for real time application is the main challenge of the wireless area network. 802.11standards use distributed Coordination Function (DCF) protocol and Enhanced Distributed Channel Access (EDCA) protocol in the MAC layer. DCF protocol has only one queue for different data types, it deals with data depending on the arriving time. There is no priority to serve real time applications faster. However EDCA protocol has four queues and each queue works with specific data type. Voice, video, best effort and background are the different queues in the EDCA protocol. Different parameters and priorities are defined for each queue. The voice queue reserves the highest priority and serves its data first. In this paper QOS parameters are measured for both DCF and EDCA protocol by using OPNET simulation. The QOS parameters must reach the requirements to support QOS. The results show how QOS parameters do not reach the requirements when using DCF protocol. The values of the end to end delay and the packet loss percentage are 0.514second, 19.04% respectively. But, when using EDCA protocol the end to end delay becomes 0.0624 second and the percentage of the packet loss decreases until reach 0.00617%. So the QOS parameters achieve requirements with EDCA protocol and support QOS.

References

S. R. Ibánez, R. A. Santos, V. R. Licea, A. E. Block, and M. Ã. G. Ruiz. 2008. Hybrid WiFi-WiMAX Network Routing Protocol. IEEE 2008 Electronics, Robotics and Automotive Mechanics Conference. 87–92.

A. Abu-Khadrah, Z. Zakaria, and M. A. Othman. 2014. New Technique to Enhance Quality of Service Support for Real Time Applications in EDCA Protocol. International Review on Computers and Software (IRECOS). 9(3): 541–546.

Y. Peng, Y. Yu, L. Guo, D. Jiang, and Q. Gai. 2013. An efficient Joint Channel Assignment and QoS Routing Protocol for IEEE 802.11 Multi-Radio Multi-channel Wireless Mesh Networks. Journal of Network and Computer Applications. 36(2): 843–857.

J. Kolap, S. Krishnan, and N. Shaha. 2012. Comparison of Frame Aggregation Mechanism in 802. 11n WLAN. IEEE Communication, Information & Computing Technology (ICCICT), 2012 International Conference. 1–6.

I. Tinnirello, G. Bianchi, Y. Xiao, and S. Member. 2010. Refinements on IEEE 802. 11 Distributed Coordination Function Modeling Approaches. Vehicular Technology, IEEE Transactions. 59(3): 1055–1067.

G. Bianchi. 2000. Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications. 18(3): 535–547.

S. Ullah, S. Ali, S. M. Ali, and H. A. Qureshi. 2011. INAV: Minimizing Delay Induced by DCF Control Packet Losses in IEEE 802.11 To Optimize Throughput. IEEE 2011 High Capacity Optical Networks and Enabling Technologies (HONET). 122–126.

L. Zhao, J. Y. Wu, H. Zhang, and J. Zhang. 2008. Integrated quality-of-Service Differentiation Over IEEE 802. 11 Wireless LANs. Communications, IET. 2(2): 329–335.

P. Serrano, A. Banchs, P. Patras, S. Member, A. Azcorra, and S. Member.2010. Optimal Configuration of 802. 11e EDCA for Real-Time and Data Traffic. Vehicular Technology, IEEE Transactions. 59(5): 2511–2528.

A. L. Ruscelli, G. Cecchetti, A. Alifano, and G. Lipari.2012. Enhancement of QoS Support of HCCA Schedulers using EDCA Function in IEEE 802.11e Networks. Ad Hoc Networks. 10(2): 147–161.

W. Sun, H. Zhang, C. Pan, and J. Yang. 2013. Analytical Study of the IEEE 802. 11p EDCA Mechanism. In IEEE Intelligent Vehicles Symposium (IV). 1428–1433.

Q. Zhao, D. H. K. Tsang, and T. Sakurai. 2013. A Scalable and Accurate Nonsaturated IEEE 802.11e EDCA Model for an Arbitrary Buffer Size. Mobile Computing, IEEE Transactions. 12(12): 2455–2469.

S. Rashwand and J. Mišić. 2012. Stable Operation of IEEE 802.11e EDCA: Interaction between Offered Load and MAC Parameters. Ad Hoc Networks. 10(2): 162–173.

B. Han, L. Ji, S. Lee, R. R. Miller, and B. Bhattacharjee.2009. Channel Access Throttling for Overlapping BSS Management. 2009 IEEE International Conference on Communications. 1–6.

A. S. M. Tariq and K. Perveen. 2010. Analysis of Internal Collision and Dropping Packets Characteristics of EDCA IEEE802 . 11e Using NS-2 . 34 Simulator. World Congress on Engineering and Computer Science. 1: 20–23.

A. Abu-khadrah, Z. Zakaria, and M. Othman. 2014. EDCALimitation With High Traffic Real Time. Journal of Theoretical and Applied Information Technology. 64(1): 261–266.

Downloads

Published

2015-01-11

How to Cite

Evaluating The Performance for DCF Protocol and EDCA Protocol. (2015). Jurnal Teknologi, 72(5). https://doi.org/10.11113/jt.v72.3940