OPTIMIZATION OF BIOGAS PRODUCTION FROM POULTRY MANURE WASTEWATER IN 250 ML FLASKS

Authors

  • Choo Wei Chun Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia
  • Nina Farhana Mohd Jamaludin Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia
  • Norazwina Zainol Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jt.v75.3981

Keywords:

Optimization, biogas production, poultry manure wastewater, Central Composite Design (CCD), anaerobic digestion

Abstract

A research was conducted on anaerobic digestion from poultry manure wastewater to produce biogas. This research was considered as a triumph to the concept of waste-to-wealth. The poultry manure collected was characterized and pre-treated to remove excessive ammonia-N which caused inhibition to the biogas production. Central Composite Design (CCD) with five replicates at centre points was used to investigate the simultaneous effect of the variables: agitation (110-130 rpm) and reaction time (2-4 days) on the biogas production. Then, the experiment was designed and analyzed using Design Expert V7.0 software by applying response surface methodology (RSM) concept.The biogas production performance was evaluated on the basis of biogas yield from initial Chemical Oxygen Demand (COD) and was found ranged from 0.49 to 4.37 mL/g COD. Quadratic model was well fitted (R-squared>0.80) with a confidence level higher than 95 %. The optimum biogas production condition was at agitation: 120 rpm and reaction time: 3.3 days. Under this condition, 4.45 mL/g COD of biogas yield was obtained. This counted for 5.82% error from predicted values.

References

Burton, C. H., C. Turner. 2003. Manure management- Treatment Strategies for Sustainable Agriculture. 2nd Edition. ISBN: 0 9531282 6 1.

Kelleher, B. P., J. J. Leahy, A. M. Henihan, T. F. O’Dwyer, D. Sutton, M. J. Leahy. 2000. Advances in Poultry Litter Disposal Technology-A Review. Bioresource Technology. 83: 27-36.

Beccari, M., F. Bonemazzi, M. Majone, C. Riccardi. 1996. Interaction Between Acidogenesis and Methanogenesis in Anaerobic Treatment of Olive-Oil Mill Effluents. Water Research. 30(1): 183-189.

Gangagni, R. A., K. R. Sasi, P. S. Surya, J. Vanajakshi, J. Joseph, A. Jetty, R. A. Rajashekhara, P. N. Sarma. 2008. Biomethanation of Poultry Litter Leachate in UASB Reactor Coupled with Ammonia Stripper for Enhancement of Overall Performance. Bioresource Technology. 99(18): 8679-8684.

Salminen, E., J. Rintala. 2002. Anaerobic Digestion of Organic Solid Poultry Slaughter House Waste-A Review. Bioresource Technology. 83: 13-26.

Bezerra, M. A., R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira. 2008. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Pure and Applied Analytical Chemistry. 76(5): 965-977.

Chauhan, V., N. Bhardwaj, and S. Chakrabarti. 2013. Application of Response Surface Methodology and Central Composite Design for the Optimization of Talc Filler and Retention Aid in Papermaking. Indian Journal of Chemical Technology. 20(2): 121-127.

Azami, M., M. Bahram, S. Nouri, and A. Naseri. 2011. A Central Composite Design for the Optimization of the Removal of the Azo Dye, Methyl Orange, from Waste Water Using the Fenton Reaction. Journal of Serbian Chemical Society. 77(2): 235-246.

Mohd Salleh, N. H., M. Z. Mohamed Daud, D. Arbain, M. S. Ahmad, and K. S. Ku Ismail. 2011. Optimization of Alkaline Hydrolysis of Paddy Straw for Ferulic Acid Extraction. Industrial Crops Production. 34: 1635-1640.

Davies, Z., D. Mason, A. Brooks, G. Griffith, R. Merry, & M. Theodorou. 2000. An Automated System for Measuring Gas Production from Forages Inoculated with Rumen Fluid and Its Use In Determining the Effect of Enzymes on Grass Silage. Animal Feed Science and Technology. 83(3): 205-221.

Demirci, G. G., and G. Demirer. 2004. Effect of initial COD Concentration, Nutrient Addition, Temperature and Microbial Acclimation on Anaerobic Treatability of Broiler and Cattle Manure. Bioresource Technology. 93(2): 109-117.

Fernandez, B., P. Porrier, C. Chamy. 2001. Effect of Inoculums-Substrate Ratio on the Start-up of Solid Waste Anaerobic Digesters. Water Science Technology. 44(4): 103-108.

Jamaludin, M. N., & N. Zainol. 2013. Screening of Factors Affecting Pre-Treatment by Ammonia-N Removal From Poultry Manure Wastewater by Using Soil Water to Improve Biogas Production. In: 27th Regional Conference on Solid State Science & Technology (RCSSST27). Retrieved from website: http://umpir.ump.edu.my/5615/1/scan0009.pdf.

Ward, A. J., P. J. Hobbs, P. J. Holliman, D. L. Jones. 2008. Optimisation of the Anaerobic Digestion of Agricultural Resources. Bioresource Technology. 99: 7928-7940.

Bas, D. and H. Boyaci. 2007. Modeling and Optimization I: Usability of Response Surface Methodology. Journal of Food Engineering. 78(3): 836-845.

Lobos, J., C. Wisniewski, M. Heran, A. Grasmick. 2008. Sequencing Versus Continuous Membrane Bioreactors: Effect of Substrate to Biomass Ratio (F/M) on Process Performance. Journal of Membrane Science. 317 71-77.

Yetilmezsoy, K., & S. Sakar. 2008. Improvement of COD and Color Removal from UASB Treated Poultry Manure Wastewater Using Fenton's Oxidation. Journal of Hazardous Materials. 151(2-3): 547-558. doi:10.1016/j.jhazmat.2007.06.013.

Hwang, M., N. Jang, S. Hyun, & I. Kim. 2004. Anaerobic bio-Hydrogen Production from Ethanol Fermentation: The Role of pH. Journal Of Biotechnology. 111(3): 297-309. doi:10.1016/j.jbiotec.2004.04.024.

Sung, W., J. Kao, & R. Chen. 2014. Environment, Energy and Sustainable Development. London: Taylor & Francis Group, 229-233.

Cakir, F., & M. Stenstrom. 2004. Greenhouse Gas Production: A Comparison between Aerobic and Anaerobic Wastewater Treatment Technology. Proc Water Environ Fed. (15): 566-580. doi:10.2175/193864704784147944.

Cogger, C., D. Sullivan, A. Bary, & J. Kropf. 1998. Matching Plant-Available Nitrogen from Biosolids with Dryland Wheat Needs. Jpa. 11(1), 41: 401-408. doi:10.2134/jpa1998.0041.

Chamy, R., & C. Ramos. 2011. Factors in the Determination of Methanogenic Potential of Manure. Bioresource Technology. 102(17): 7673-7677. doi:10.1016/j.biortech.2011.05.044.

Trosvik, P., K. Rudi, T. Næs, A. Kohler, K. Chan, K. Jakobsen, & N. Stenseth. 2008. Characterizing Mixed Microbial Population Dynamics Using Time-Series Analysis. The ISME Journal. 2(7): 707-715. doi:10.1038/ismej.2008.36.

Bujoczek, G., J. Oleszkiewicz, R. Sparling, & S. Cenkowski. 2000. High Solid Anaerobic Digestion of Chicken Manure. Journal of Agricultural Engineering Research. 76(1): 51-60. doi:10.1006/jaer.2000.0529.

Sung, S., & T. Liu. 2003. Ammonia Inhibition on Thermophilic Anaerobic Digestion. Chemosphere. 53(1): 43-52. doi:10.1016/s0045-6535(03)00434-x.

Lei, X., N. Sugiura, C. Feng, & T. Maekawa. 2007. Pretreatment of Anaerobic Digestion Effluent with Ammonia Stripping and Biogas Purification. Journal of Hazardous Materials. 145(3): 391-397. doi:10.1016/j.jhazmat.2006.11.027.

Rao, P. V., S. S. Baral, R. Dey, & S. Mutnuri. 2010. Biogas Generation Potential by Anaerobic Digestion for Sustainable Energy Development in India. Renewable and Sustainable Energy Reviews. 14 (7): 2086-2094.

Abouelenien, F., W. Fujiwara, Y. Namba, M. Kosseva, N. Nishio, & Y. Nakashimada. 2010. Improved Methane Fermentation of Chicken Manure via Ammonia Removal by Biogas Recycle. Bioresource Technology. 101(16): 6368-6373. doi:10.1016/j.biortech.2010.03.071.

Kraber, S., P. Whitcomb, & M. Anderson. 2002. Handbook for Experimenters. Minneapolis, MN: Stat-Ease.

Environmental Protection Agency (EPA). 1999.Wastewater Technology Fact SheetFine Bubble Aeration.US.EPA 832-F-99-065.

Chen, X., and M. Louge. 2008. Heat Transfer Enhancement in Dense Suspensions of Agitated Solids. Part I: Theory. International Journal of Heat and Mass Transfer. 51(21): 5108-5118.

Igoni, H. A., M. Ayotamuno, C. Eze, S. Ogaji, and S. Probert. 2008. Designs of Anaerobic Digesters for Producing Biogas fFrom Municipal Solid-Waste. Applied Energy. 85(6): 430-438.

Appels, L., J. Baeyens, J. Degrève, and R. Dewil. 2008. Principles and Potential of the Anaerobic Digestion of Waste-activated Sludge. Progress in Energy and Combustion Science. 34(6): 755-781.

Water Environment Federation (WEF). 1995. Wastewater Residuals Stabilization, MOP No.FD-9. Alexandria, VA: Water Environment Federation.

Kaparaju, P., I. Buendia, L. Ellegaard, and I. Angelidakia. 2008. Effects of Mixing on Methane Production During Thermophilic Anaerobic Digestion of Manure: Lab-Scale and Pilot-Scale Studies. Bioresource Technology. 99 (11): 4919-4928.

Ndon, U., and R. Dague. 1997. Effects of Temperature and Hydraulic Retention Time on Anaerobic Sequencing Batch Reactor Treatment of Low-strength Wastewater. Water Research. 31(10): 2455-2466.

Sakar, S., K. Yetilmezsoy, & E. Kocak. 2009. Anaerobic Digestion Technology in Poultry and Livestock Waste Treatment—A Literature Review. Waste Management & Research. 27(1): 3-18.

Bakeman, R. 2005. Recommended Effect Size Statistics for Repeated Measure Designs. Behaviour Research Methods. 19: 115-118.

Kafle, G., & S. Kim. 2013. Anaerobic Treatment of Apple Waste with Swine Manure for Biogas Production: Batch and Continuous Operation. Applied Energy. 103: 61-72. doi:10.1016/j.apenergy.2012.10.018.

Syaichurrozi, I., Budiyono, & S. Sumardiono. 2013. Predicting Kinetic Model of Biogas Production and Biodegradability Organic Materials: Biogas Production from Vinasse at Variation of COD/N Ratio. Bioresource Technology. 149: 390-397. doi:10.1016/j.biortech.2013.09.088.

Vlassis, T., K. Stamatelatou, G. Antonopoulou, & G. Lyberatos. 2013. Methane Production Via Anaerobic Digestion of Glycerol: A Comparison of Conventional (CSTR) and High-rate (PABR) Digesters. Journal of Chemical Technology & Biotechnology. n/a-n/a. doi:10.1002/jctb.4059.

Hansen, K., I. Angelidaki, & B. Ahring. 1998. Anaerobic Digestion of Swine Manure: Inhibition by Ammonia. Water Research. 32(1): 5-12. doi:10.1016/s0043-1354(97)00201-7.

Kaparaju, P., & J. Rintala. 2005. Anaerobic Co-digestion of Potato Tuber and Its Industrial By-Products With Pig Manure. Resources, Conservation and Recycling. 43(2): 175-188. doi:10.1016/s0921-3449(04)00119-3.

Strik, D., A. Domnanovich, & P. Holubar. 2006. A pH-based Control of Ammonia in Biogas During Anaerobic Digestion of Artificial Pig Manure and Maize Silage. Process Biochemistry. 41(6): 1235-1238. doi:10.1016/j.procbio.2005.12.008.

Misi, S., & C. Forster. 2001. Batch Co-Digestion of Two-Component Mixtures of Agro-Wastes. Process Safety and Environmental Protection. 79(6): 365-371. doi:10.1205/095758201753373140.

Bouallagui, H., Y. Touhami, R. Ben Cheikh, & M. Hamdi. 2005. Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes. Cheminform. 36(19): 989-995. doi:10.1002/chin.200519288.

Speece, R. 1996. 96/04301 Anaerobic Treatment of Industrial Wastewaters. Fuel and Energy Abstracts. 37(4): 298. doi:10.1016/0140-6701(96)82582-3.

Downloads

Published

2015-06-29

Issue

Section

Science and Engineering

How to Cite

OPTIMIZATION OF BIOGAS PRODUCTION FROM POULTRY MANURE WASTEWATER IN 250 ML FLASKS. (2015). Jurnal Teknologi, 75(1). https://doi.org/10.11113/jt.v75.3981