VHF-PECVD FABRICATION PARAMETERS DEPENDENT MORPHOLOGYVARIATION OF GOLD CATALYST ASSISTED SILICON THIN FILM GROWTH

Authors

  • Khaidzir Hamzah Nuclear Engineering Programme, Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • M. Abdullah Izat Mohd Yassin Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Sib Krishna Ghoshal Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • M. Akmal Hasanudin Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
  • Abdul Khamim Ismail Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v76.4030

Keywords:

VHF-PECVD, FESEM, nanowire, VLS

Abstract

Achieving two dimensional quantum structure of silicon with well-defined tunable morphology is an outstanding issue. We present the preliminary results on fabrication parameters dependent silicon thin film production using VHF-PECVD method. Five samples are prepared on Si(100) substrate with gold (Au) catalyst by adjusting different parameters such as deposition time, temperature and the flow of precursor gas. The samples morphology are analyzed using FESEM. The results reveal that the silicon thin film appear to be smooth and more uniform after an enormous amount of hydrogen is inserted together with the precursor gas (silane) during the deposition process. More interestingly, the films exhibit silicon nanowires as the deposition time is increased up to 1 hour. This morphological transformation is attributed to the vapor-liquid-solid (VLS) mechanism related to the deposition process.

Author Biographies

  • Khaidzir Hamzah, Nuclear Engineering Programme, Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
    Head of Nuclear engineering, Faculty of Petroleum and renewable Energy Engineering
  • M. Abdullah Izat Mohd Yassin, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
    PHD Student of Physics Department in Universiti Teknologi Malaysia
  • M. Akmal Hasanudin, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
    Master student, Department of Physics

References

Howling, A. A., Dorier, J. L., Hollenstein, Ch., Kroll, U., Finger, F. 1991. Frequency Effects in Silane Plasmas for PECVD. 38th Annual (AVS) Symposium & Topical Conference. Seattle, Wahington, USA. 11-15 November 1991. 1-16.

Zheng, G., Lu, W., Jin, S., and Lieber, C. M. 2004. Synthesis and Fabrication of High-Performance n-type Silicon Nanowire transistors. Journal of Advanced Materials. 16(21): 1890-1893.

Qian, F., Li, Y., Gradecak, S., Wang, D., Barrelet, C. J and Lieber, C. M. 2004. Gallium Nitride-Based silicon nanowire Radial Heterostructures for Nanophotonics. Nano Letters. 4(10): 1975-1979.

Nam, C. Y., Jaroenapibal, P., Tham, D., Luzzi, D. E., Evoy, S. and Fischer, J. E. 2006. Diameter-Dependent Electromechanical Properties of GaN Nanowires. Nano Letters. 6(2): 153-158.

Zhang, Y., Kolmakov, A., Chretien, S., Metiu, H., and Moskovits, M. 2004. Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by Manipulating electron Dentisty Inside It. Nano Letters. 4(3): 403-407.

Tsakalakos, L., Balch, J., Fronheiser, Shih, J. M. Y., LeBoeuf, S. F., Pietrzykowski, M., Codella, P. J., Korevaar, B. A., Sulima, O., Rand, J., Davuluru, A. and Umakant Rapol. 2007. Strong Broadband optical Absorption in Silicon Nanowire Films. J. Nanophotonics. 1(1): 013552 1-10.

Hofmann, S., Ducati, C., Neill, R. J., Piscanec, S. and Ferrari, A. C. 2003. Gold Catalyst Growth of Silicon Nanowires by Plasma Enhanced Chemical Vapor Deposition. Journal of Applied Physics. 94(9): 6005-6012.

Westwater, J., Gossain, D. P., Tomiya, S., Usui, S. and Ruda, H. 1997. Growth of Silicon Nanowire via Gold/Silane Vapor-liquid-solid Reaction. Journal of Vacuum Science and Technology B. 15: 554-557.

Morales, A. M and Lieber, C. M. 1998. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor nanowires. Science. 279: 208-211.

Wagner, R. S. and Ellis, W. C. 1964. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Applied Physics Letters. 4(5): 89-90.

Kamins, T. I., Williams, R. S., Chen, Y., Chang, Y. L., and Chang, Y. A. 2000. Chemical Vapor Deposition of Si Nanowires Nucleation by TiSi2 islands on Si. Applied Physics Letters. 76(5): 562-564.

Barsotti, R. J., Fischer, J. E., Lee, C. H., Mahmood, J., Adu, C. K. W. and Eklund, P. C. 2002. Imaging, Structural, and Chemical Analysis of Silicon Nanowire. Applied Physics Letters. 81(15): 2866-2868.

Sunkara, M. K., Sharma, S., Miranda, R., Lian, G. and Dickey, E. C. 2001. Bulk Synthesis of Silicon Nanowire using a Low Temperature Vapor-Liquid-Solid Method. Applied Physics Letters. 79(10): 1548-1548.

Zardo, I., Yu, L., Conesa-Boj, S., Estrade´, S., Pierre Jean Alet, Rossler, J., Frimmer, M., Roca, P., Cabarrocas, I., Peiro´, F., J., Arbiol, Morante, J. R., Fontcuberta, A., and Morral, I. 2009. Gallium Assisted Plasma Enhanced Chemical Vapor Deposition of Silicon Nanowires. Nanotechnology. 20(15): 155602.

Zeng, X. B., Xu, Y. Y., Zhang, S. B., Hu, Z. H., Diao, H. W., Wang, Y. Q., Kong, G. L., Liao, X. B. 2003. Silicon Nanowires Grown on Pre-annealed Si Substrate. Journal of Crystal Growth. 247(1-2): 13-16.

Schmidt, V., Wittemann, J. V., Senz, S., Gosele, U. 2009. Silicon nanowires: A Review on Aspects of their Growth and their Electrical Properties. Advanced Materials. 21: 2681-2702.

Hou, W. C. and Hong, F. C. 2009. Controlled Surface diffusion in Plasma-enhanced Chemical Vapor Deposition of GaN Nanowires. Nanotechnology. 20(5): 055606.

Downloads

Published

2015-08-26

Issue

Section

Science and Engineering

How to Cite

VHF-PECVD FABRICATION PARAMETERS DEPENDENT MORPHOLOGYVARIATION OF GOLD CATALYST ASSISTED SILICON THIN FILM GROWTH. (2015). Jurnal Teknologi (Sciences & Engineering), 76(1). https://doi.org/10.11113/jt.v76.4030