POLYHYDROXYALKANOATES (PHAs) FOR TISSUE ENGINEERING APPLICATIONS: BIOTRANSFORMATION OF PALM OIL MILL EFFLUENT (POME) TO VALUE-ADDED POLYMERS
DOI:
https://doi.org/10.11113/jt.v78.4042Keywords:
Biomaterials, polyhydroxyalkanoates (PHAs), palm oil mill effluent (POME), 3-D scaffold, surface modifications, cell-biomaterial affinityAbstract
The study of cancer cell has been hindered by the lack of appropriate ex vivo models, which can mimic this microenvironment. It is hypothesized that the fabrication of porous 3-D scaffolds for the biomimetics growth of cancer cells ex vivo could facilitate the study of the disease in its native 3-D niche. For that reason, biomaterials are used for fabrication of 3-D scaffold, in general, may be natural polymers such as proteins, collagens and gelatin, or synthetic biopolymers. Among the various available biodegradable polymers, polyhydroxyalkanoates (PHAs) have gained significant interest as one of the value-added materials which can be synthesized from abundantly available source of palm oil mill effluent (POME). Down the group of the PHA, poly-3-hydroxybutyrate (PHB) and copolymerizing this PHB that produced PHBVs; these two polymers have the most prevalent polymer used for scaffolds fabrication. A physico-chemical and biological modification has developed to improve wetting, adhesion, and printing of polymer surfaces, generally by introducing a variety of polar groups. These techniques must be tailored to introduce a specific functional group when the surface modification is a precursor to attach a bioactive compound. There are a few methods in order to fabricate porous 3-D scaffolds such as solvent casting, particulate leaching, thermally induced phase separation, gas forming, fiber bonding, electrospinning and also solid free form method. A review of the polyhydroxyalkanoates (PHAs) for tissue engineering applications is presented, beginning with the basic naturally derived polymerization of PHAs, biotransformation of palm oil mill effluent (POME) to the value-added polymers, novel methods of scaffold fabrication capabilities and its physico-chemical and biological surface modifications to increase cell-biomaterial affinity.
References
Williams, S. F., Martin, D. P., Horowitz, D. M., Peoples, O. P. 1999. PHA Applications: Addressing the Price Performance Issue: I. Tissue Engineering. International Journal of Biological Macromolecules. 25(1-3): 111-121.
Langer, R., Vacanti, J. P. 1993. Tissue Engineering. Science. 260(5110): 920-926.
Gomes, M. E., Reis, R. L. 2004. Tissue Engineering: Key Elements and Some Trends. Macromolecular Bioscience. 4(8): 737-742.
Doherty, P. J., Williams, R. L., Williams, D., Lee, A. J. C. 1992. Biomaterial-Tissue Interfaces: Second Consensus. In Conference on Definitions in Biomaterials. Elsevier: Amsterdam.
Zinn, M., Witholt, B., Egli, T. 2001. Occurrence, Synthesis and Medical Application of Bacterial Polyhydroxyalkanoate. Advanced Drug Delivery Reviews. 53(1): 5-21.
Narayan, R. J. 2010. The Next Generation of Biomaterial Development. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368(1917): 1831-1837.
Williams, D. F. 1999. The Williams Dictionary of Biomaterials. Liverpool, UK: Liverpool University Press. 36.
Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R. 2006. Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering. Biomaterials. 27(18): 3413-3431.
Linda, G. G. 2002. Emerging Design Principles in Biomaterials and Scaffolds for Tissue Engineering. Annals of the New York Academy of Sciences, 961(Reparative Medicine: Growing Tissues and Organs). 83-95.
Bacon, A. 2002. Polymers-A Synthetic or Natural Choice? Drug Discovery Today. 7(24): 1202-1203.
Malafaya, P. B., Silva, G. A., Reis, R. L. 2007. Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Advanced Drug Delivery Reviews. 59(4-5): 207-233.
Liu, C., Xia, Z., Czernuszka, J. T. 2007. Design and Development of Three-Dimensional Scaffolds for Tissue Engineering. Chemical Engineering Research and Design. 85(7): 1051-1064.
Vail, N. K., Swain, L. D., Fox, W. C., Aufdlemorte, T. B., Lee, G., Barlow, J. W. 1999. Materials for Biomedical Applications. Materials & Design. 20(2-3): 123-132.
Jung, I. L., Phyo, K. H., Kim, K. C., Park, H. K., Kim, I. G. 2005. Spontaneous Liberation of Intracellular Polyhydroxybutyrate Granules in Escherichia Coli. Research in Microbiology. 156(8): 865-873.
Yu, L., Dean, K., Li, L. 2006. Polymer Blends and Composites from Renewable Resources. Progress in Polymer Science. 31(6): 576-602.
Chen, G.-Q., Wu, Q. 2005. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials. 26(33): 6565-6578.
Byrom, D. 1992. Production of Poly-[Beta]-Hydroxybutyrate: Poly-[Beta]-Hydroxyvalerate Copolymers. FEMS Microbiology Letters. 103(2-4): 247-250.
Keshavarz, T., Roy, I. 2010. Polyhydroxyalkanoates: Bioplastics with a Green Agenda. Current Opinion in Microbiology. 13(3): 321-326.
Lee, S. Y. 1996. Plastic Bacteria? Progress and Prospects for Polyhydroxyalkanoate Production In Bacteria. Trends in Biotechnology. 14(11): 431-438.
Steinbüchel, A., Valentin, H. E. 1995. Diversity of Bacterial Polyhydroxyalkanoic Acids. FEMS Microbiology Letters. 128(3): 219-228.
Kessler, B., Weusthuis, R., Witholt, B., Eggink, G., 2001. Production of Microbial Polyesters: Fermentation and Downstream Processes. In Biopolyesters. 159-182.
Witholt, B., Kessler, B. 1999. Perspectives of Medium Chain Length Poly(Hydroxyalkanoates), A Versatile Set of Bacterial Bioplastics. Current Opinion in Biotechnology. 10(3): 279-285.
Kim, Y., Lenz, R. 2001. Polyesters from Microorganisms. In Biopolyesters. 51-79.
Board-MPOB, M. P. O. 2010. Overview of the Malaysian Oil Palm Industry 2009, M.P.O.B. (MPOB). Editor. Kuala Lumpur, Malaysia.
Butler, R. A. 2006. Why Is Palm Oil Replacing Tropical Rainforests? Why Are Biofuels Fuelling Deforestation?
Ming, K. K., Chandramohan, D. 2002. Malaysian Palm Oil Industry at Crossroads and Its Future Direction, M.P.O.B. (MPOB). Editor. Kuala Lumpur.
Ahmad, A. L., Ismail, S., Bhatia, S. 2005. Membrane Treatment for Palm Oil Mill Effluent: Effect of Transmembrane Pressure and Crossflow Velocity. Desalination. 179(1-3): 245-255.
Kittikun, A. H., Prasertsan, P., Srisuwan, G., Krause, A. 2000. Environmental Management for Palm Oil Mill, in Material Flow Analysis of Integrated Bio-Systems. University of Tokyo. 1-12.
Latif, A. A., Ismail, S., Bhatia, S. 2003. Water Recycling from Palm Oil Mill Effluent (POME) Using Membrane Technology. Desalination. 157(1-3): 87-95.
Salmiati. 2008. Intracellular Biopolymer Production from Fermented Palm Oil Mill Effluent Using Mixed Microbial Cultures. In Chemical Engineering. Universiti Teknologi Malaysia: Johor, Malaysia.
Serafim, L. S., Lemos, T., Rosetti, S., Levantesi, C., Tandoi, V., Reis, M. A. 2006. Microbial Community Analysis with a High PHA Storage Capacity. Wat. Sci. Technol. 54(1): 183-188.
Chanprateep, S. 2010. Current Trends in Biodegradable Polyhydroxyalkanoates. Journal of Bioscience and Bioengineering. 110(6): 621-632.
Gurieff, N., Lant, P. 2007. Comparative Life Cycle Assessment and Financial Analysis of Mixed Culture Polyhydroxyalkanoate Production. Bioresource Technology. 98(17): 3393-3403.
Salmiati. Ujang, Z., Salim, M.R., Olsson, G. 2010. Process Development To Produce Phas From Fermented Palm Oil Mill Effluent Using Anaerobic-Aerobic Sequencing Batch Reactor. In 1st IWA Malaysia Young Water Professionals Conference (IWAYP2010). Kuala Lumpur.
Salmiati. Ujang, Z., Salim, M. R., Md., D. M. F., Ahmad, M. A. 2007. Intracellular Biopolymer Productions Using Mixed Microbial Cultures From Fermented POME. Wat. Sci. Technol. 56(8): 179-185.
Yu, J. 2003. Production Biodegradable Thermoplatic Materials from Organic Wastes. W. Patent, Editor.
Council, M. P. O. 2007. Malaysia Palm Oil Industry Calls For Closer Ties With EU On Sustainability-Press Release In Brussels. Malaysian Palm Oil Council (MPOC): Belgium.
Alias, Z., Tan, I. K. P. 2005. Isolation of Palm Oil-Utilising, Polyhydroxyalkanoate (PHA)-Producing Bacteria by an Enrichment Technique. Bioresource Technology. 96(11): 1229-1234.
Bengtsson, S., Hallquist, J., Werker, A., Welander, T. 2008. Acidogenic Fermentation of Industrial Wastewaters: Effects of Chemostat Retention Time and Ph on Volatile Fatty Acids Production. Biochemical Engineering Journal. 40(3): 492-499.
Md., D. M. F., Ujang, Z., Salmiati, Van, L. M. C. M. 2006. Storage of Polyhydroxyalkanoates (PHA) In Fed-Batch Mixed Cultures. In 4th Seminar on Water Management (JSPS-VCC). Johor Bahru, Johor, Malaysia.
Ali, H. M., Shirai, Y., Kusubayashi, N., Ismail, A. K. M., Nakanishi, K., Hashimoto, K. 1997. The Production of Polyhydroxyalkanoate from Anaerobically Treated Palm Oil Mill Effluent by Rhodobacter Sphaeroides. Journal of Fermentation and Bioengineering. 83(5): 485-488.
Jamal, I. D., Md., Z. A. 2010. Statistical Optimization of Fermentation Conditions for Cellulase Production from Palm Oil Mill Effluent. American Journal of Environmental Sciences. 6(1): 66-70.
Ali, H. M., Shirai, Y., Kusubayashi, N., Ismail, A. K. M., Nakanishi, K., Hashimoto, K. 1996. Effect of Organic Acid Profiles During Anaerobic Treatment of Palm Oil Mill Effluent on the Production of Polyhydroxyalkanoates by Rhodobacter Sphaeroides. Journal of Fermentation and Bioengineering. 82(2): 151-156.
Hassan, M. A. S., N. Umeki, H. Abdul Karim, M. I. Nakanishi, K. and Hashimoto, K. 1997. Acetic Acid Separation From Anaerobically Treated Palm Oil Mill Effluent For The Production Of Polyhydroxyalkanoate By Alcaligenes Eutrophus. Bioscience Biotechnology Biochemical. 61: 1465-1468.
Hassan, M. A., Nawata, O., Shirai, Y., Rahman, N. A. A., Yee, Phang, L., Ariff, A. K., Mohamed, I. A. 2002. A Proposal for Zero Emission from Palm Oil Industry Incorporating the Production of Polyhydroxyalkanoates from Palm Oil Mill Effluent. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN. 35(1): 9-14.
Md., D. M. F., Ujang, Z., Van, L. M. C. M., Salmiati, Ahmad, M. A. 2006. Polyhydroxyalkanoates (Phas) Production from Aerobic-Mixed Cultures. Malaysian Journal of Civil Engineering. 18(2): 109-128.
Brandi, H., Mayer, R., Wintermantel, E. J. 1995. Degradation and Applications of Polyhydroxyalkanoates. Canadian Journal of Microbiology. 41(13): 143-153.
Brandl, H., Gross, R., Lenz, R., Fuller, R. 1990. Plastics from Bacteria and for Bacteria: Poly(Î’-Hydroxyalkanoates) as Natural, Biocompatible, and Biodegradable Polyesters. In Microbial Bioproducts. 77-93.
Doyle, C., Tanner, E. T., Bonfield, W. 1991. In Vitro and in Vivo Evaluation of Polyhydroxybutyrate and of Polyhydroxybutyrate Reinforced with Hydroxyapatite. Biomaterials. 12(9): 841-847.
Pouton, C. W., Akhtar, S. 1996. Biosynthetic Polyhydroxyalkanoates and Their Potential in Drug Delivery. Advanced Drug Delivery Reviews. 18(2): 133-162.
Mas, A., Jaaba, H., Schue, F., Belu, A. M., Kassis, C. M., Linton, R. W., Desimone, J. M. 1997. Modification De Surface De Poly (Hydroxybutyrate-Co-9% Hydroxyvalerate) Par Polymerisation Par Plasma D'alcool Allylique. European Polymer Journal. 33(3): 331-337.
Korsatko, W., Wabnegg, B., Tillian, H. M., Egger, G., Pfragner, R., Walser, V. 1984. Poly-D-(−)-3-Hydroxybutyric Acid (Polyhba) a Biodegradable Carrier for Long Term Medication Dosage. III. Studies on Biocompatibility of Polyhba Implantation Tablets In Tissue Culture and Animals. Pharm. Ind. 46: 952-954.
Rivard, C.-H., Chaput, C. J., DesRosiers, E. A., Yahia, L'. H., Selmani, A. 1995. Fibroblast Seeding and Culture in Biodegradable Porous Substrates. Journal of Applied Biomaterials. 6(1): 65-68.
Sodian, R., Hoerstrup, S. P., Sperling, J. S., Daebritz, S. H., Martin, D. P., Schoen, F. J., Vacanti, J. P., Mayer, J. E. 2000. Tissue Engineering Of Heart Valves: In Vitro Experiences. The Annals of Thoracic Surgery. 70(1): 140-144.
Yee, P. L., Hassan, M. A., Shirai, Y., Wakisaka, M., Abdul, K., Mohamed, I. 2003. Continuous Production of Organic Acids from Palm Oil Mill Effluent with Sludge Recycle by the Freezing-Thawing Method. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN. 36(6): 707-710.
Cheong, W. C., Hassan, M. A., Abdul, A. S., Abdul, K. M. I., Sabaratnam, V., Shirai, Y. 2004. Treatment Of Palm Oil Mill Effluent (POME) Coupled With Biohydrogen Production. In Asia Water 2004. The Mines, Kuala Lumpur, Malaysia.
Widmer, M. S., Mikos, A. G. 1998. Fabrication of Biodegradable Polymer Scaffolds. In Frontiers in Tissue Engineering. Elsevier Science Ltd.: Oxford. 107-120.
Leong, K. F., Cheah, C. M., Chua, C. K. 2003. Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs. Biomaterials. 24(13): 2363-2378.
Karageorgiou, V., Kaplan, D. 2005. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials. 26(27): 5474-5491.
Puppi, D., Chiellini, F., Piras, A.M., Chiellini, E. 2010. Polymeric Materials for Bone and Cartilage Repair. Progress in Polymer Science. 35(4): 403-440.
Shastri, V. P., Martin, I., Langer, R. 2000. Macroporous Polymer Foams By Hydrocarbon Templating. Proceedings of the National Academy of Sciences. 97(5): 1970-1975.
Boyan, B. D., Hummert, T. W., Dean, D. D., Schwartz, Z. 1996. Role Of Material Surfaces In Regulating Bone And Cartilage Cell Response. Biomaterials. 17(2): 137-146.
McClary, K. B., Ugarova, T., Grainger, D. W. 2000. Modulating Fibroblast Adhesion, Spreading, And Proliferation Using Self-Assembled Monolayer Films Of Alkylthiolates On Gold. Journal of Biomedical Materials Research. 50(3): 428-439.
Quirk, R. A., Chan, W. C., Davies, M. C., Tendler, S. J. B., Shakesheff, K. M. 2001. Poly(L-Lysine)–GRGDS As A Biomimetic Surface Modifier For Poly(Lactic Acid). Biomaterials. 22(8): 865-872.
Zubairi, S. I., A. Bismarck, and A. Mantalaris. 2015. The Effect Of Surface Heterogeneity On Wettability Of Porous Three Dimensional (3-D) Scaffolds Of Poly (3-Hydroxybutyric Acid)(Phb) and Poly (3-Hydroxybutyric-Co-3-Hydroxyvaleric Acid)(Phbv). Jurnal Teknologi. 75(1).
Chu, P. K., Chen, J. Y., Wang, L. P., Huang, N. 2002. Plasma-Surface Modification Of Biomaterials. Materials Science and Engineering: R: Reports, 36(5-6): 143-206.
Humphries, M. J., Akiyama, S. K., Komoriya, A., Olden, K., Yamada, K. M. 1986. Identification Of An Alternatively Spliced Site In Human Plasma Fibronectin That Mediates Cell Type-Specific Adhesion. The Journal of Cell Biology. 103(6): 2637-2647.
Shin, H., Jo, S., Mikos, A. G. 2003. Biomimetic Materials For Tissue Engineering. Biomaterials. 24(24): 4353-4364.
Hutmacher, D. W. 2000. Scaffolds In Tissue Engineering Bone And Cartilage. Biomaterials. 21(24): 2529-2543.
Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Langer, R., Winslow, D. N., Vacanti, J. P. 1994. Preparation and Characterization Of Poly(L-Lactic Acid) Foams. Polymer. 35(5): 1068-1077.
Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K.-I., Ueda, M. 2003. Preparation Of Poly(Lactic Acid) Composites Containing Calcium Carbonate (Vaterite). Biomaterials. 24(19): 3247-3253.
Marra, K. G., Jeffrey, W. K., Prashant, N. D., Paul, A. W., Lee, E. 1999. In Vitro Analysis Of Biodegradable Polymer Blend/Hydroxyapatite Composites For Bone Tissue Engineering. Journal of Biomedical Materials Research. 47(3): 324-335.
Aizad, S., B. H. Yahaya, and S. I. Zubairi. 2015. Development Of A Rapid Continuous Flow Salt Leaching Kit For Fabrication Of Poly (3-Hydroxybutyric Acid-Co-3-Hydroxyvalerate)(PHBV) Porous 3-D Scaffold. Jurnal Teknologi. 75(1).
Zubairi, S. I. 2014. Porous Three Dimensional (3-D) Scaffolds of Poly (3-Hydroxybutyric Acid)(PHB) and Poly (3-Hydroxybutyric-co-3-Hydroxyvaleric Acid)(PHBV): Determination of Salt Leaching Efficiency of Solvent-Casting Particulate-Leaching (SCPL). Advances in Environmental Biology. 8(10): 925-932.
Nam, Y. S., Park, T. G. 1999. Porous Biodegradable Polymeric Scaffolds Prepared By Thermally Induced Phase Separation. Journal of Biomedical Materials Research. 47(1): 8-17.
Schugens, C., Maquet, V., Grandfils, C., Jerome, R., Teyssie, P. 1996. Polylactide Macroporous Biodegradable Implants For Cell Transplantation. II. Preparation Of Polylactide Foams By Liquid-Liquid Phase Separation. J Biomed Mater Res. 30(4): 449-61.
Roether, J. A., Boccaccini, A. R., Hench, L. L., Maquet, V., Gautier, S., Jérôme, R. 2002. Development And In Vitro Characterisation Of Novel Bioresorbable And Bioactive Composite Materials Based On Polylactide Foams And Bioglass® For Tissue Engineering Applications. Biomaterials. 23(18): 3871-3878.
Zhang, Y., Zhang, M. 2001. Synthesis And Characterization Of Macroporous Chitosan/Calcium Phosphate Composite Scaffolds For Tissue Engineering. Journal of Biomedical Materials Research. 55(3): 304-312.
Chen, G., Ushida, T., Tateishi, T. 2001. Development Of Biodegradable Porous Scaffolds For Tissue Engineering. Materials Science and Engineering: C. 17(1-2): 63-69.
Mooney, D.J., Baldwin, D.F., Suh, N.P., Vacanti, J.P., Langer, R. 1996. Novel Approach To Fabricate Porous Sponges Of Poly(D,L-Lactic-Co-Glycolic Acid) Without The Use Of Organic Solvents. Biomaterials. 17(14): 1417-1422.
Cima, L.G., Vacanti, J. P., Vacanti, C., Ingber, D., Mooney, D., Langer, R. 1991. Tissue Engineering By Cell Transplantation Using Degradable Polymer Substrates. J. Biomech Eng. 113(2): 143-151.
Peter, X. M., Ruiyun, Z. 1999. Synthetic Nano-Scale Fibrous Extracellular Matrix. Journal of Biomedical Materials Research. 46(1): 60-72.
Mikos, A. G., Bao, Y., Cima, L. G., Ingber, D. E., Vacanti, J. P., Langer, R. 1993. Preparation Of Poly(Glycolic Acid) Bonded Fiber Structures For Cell Attachment And Transplantation. J Biomed Mater Res. 27(2): 183-9.
Mikos, A. G., Temenoff, J. S. 2000. Formation Of Highly Porous Biodegradable Scaffolds For Tissue Engineering. 3(2).
Xu, C. Y., Inai, R., Kotaki, M., Ramakrishna, S. 2004. Aligned Biodegradable Nanofibrous Structure: A Potential Scaffold For Blood Vessel Engineering. Biomaterials. 25(5): 877-886.
Ouyang, H. W., Goh, J. C., Thambyah, A., Teoh, S. H., Lee, E. H. 2003. Knitted Poly-Lactide-Co-Glycolide Scaffold Loaded With Bone Marrow Stromal Cells In Repair And Regeneration Of Rabbit Achilles Tendon. Tissue Eng. 9(3): 431-9.
Das, S., Hollister, S. J., Flanagan, C., Adewunmi, A., Bark, K., Chen, C., Ramaswamy, K., Rose, D., Widjaja, E. 2003. Freeform Fabrication Of Nylon-6 Tissue Engineering Scaffolds. Rapid Prototyping Journal. 9(1): 43-49.
Zubairi, S., et al. 2011. Surface Treatment Of Poly(3-Hydroxybutyric Acid) (PHB) And Poly(3-Hydroxybutyric-Co-3-Hydroxyvaleric Acid) (PHBV) Porous Three-Dimensional Scaffolds With An Improved Thickness To Enhance Cell-Biomaterial Adhesion And Interactions. In 24th European Conference on Biomaterials-Annual Conference of the European Society for Biomaterials EBS 2011. 4th-8th September 2011 (Code 100603): 1p, Dublin; Ireland.
Liu, X., Ma, P. X. 2004. Polymeric Scaffolds for Bone Tissue Engineering. Annals of Biomedical Engineering. 32(3): 477-486.
Holmberg, K., Hydén, H. 1985. Methods of Immobilization of Proteins to Polymethylmethacrylate. Preparative Biochemistry. 15(5): 309-319.
Tanahashi, M., Yao, T., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T., Yamamuro, T. 1994. Apatite Coated On Organic Polymers By Biomimetic Process: Improvement In Its Adhesion To Substrate By Naoh Treatment. Journal of Applied Biomaterials,. 5(4): 339-347.
Goddard, J. M., Hotchkiss, J. H. 2007. Polymer Surface Modification For The Attachment Of Bioactive Compounds. Progress in Polymer Science. 32(7): 698-725.
Desai, S. M., Singh, R. P. 2004. Surface Modification of Polyethylene Long Term Properties of Polyolefins, A.-C. Albertsson, Editor. 2004, Springer Berlin/Heidelberg. 231-294.
Ozdemir, M., Yurteri, C. U., Sadikoglu, H. 1999. Physical Polymer Surface Modification Methods and Applications in Food Packaging Polymers. Critical Reviews in Food Science and Nutrition. 39(5): 457-477.
Lane, J. M., Hourston, D. J. 1993. Surface Treatments Of Polyolefins. Progress in Organic Coatings. 21(4): 269-284.
Oyane, A., Uchida, M., Yokoyama, Y., Choong, C., Triffitt, J., Ito, A. 2005. Simple Surface Modification Of Poly(ϵ-Caprolactone) To Induce Its Apatite-Forming Ability. Journal of Biomedical Materials Research Part A. 75A(1): 138-145.
Kong, J.-S., Lee, D.-J., Kim, H.-D. 2001. Surface Modification Of Low-Density Polyethylene (LDPE) Film And Improvement Of Adhesion Between Evaporated Copper Metal Film And LDPE. Journal of Applied Polymer Science. 82(7): 1677-1690.
Kim, Y.J., Kang, I.-K., Huh, M.W., Yoon, S.-C. 2000. Surface Characterization And In Vitro Blood Compatibility Of Poly(Ethylene Terephthalate) Immobilized With Insulin And/Or Heparin Using Plasma Glow Discharge. Biomaterials. 21(2): 121-130.
Aouinti, M., Bertrand, P., Fabienne, P.-E. 2003. Characterization of Polypropylene Surface Treated in a CO<sub>2</sub> Plasma. Plasmas and Polymers. 8(4): 225-236.
Wang, M.-J., Chang, Y.-I., Poncin-Epaillard, F. 2005. Acid And Basic Functionalities Of Nitrogen And Carbon Dioxide Plasma-Treated Polystyrene. Surface and Interface Analysis. 37(3): 348-355.
Brown, L., Koerner, T., Horton, J. H., Oleschuk, R. D. 2006. Fabrication And Characterization Of Poly(Methylmethacrylate) Microfluidic Devices Bonded Using Surface Modifications And Solvents. Lab on a Chip. 6(1): 66-73.
Crombez, M., Chevallier, P., Gaudreault, R. C., Petitclerc, E., Mantovani, D., Laroche, G. 2005. Improving Arterial Prosthesis Neo-Endothelialization: Application Of A Proactive VEGF Construct Onto PTFE Surfaces. Biomaterials. 26(35): 7402-7409.
Shenton, M. J., Stevens, G. C. 2001. Surface Modification Of Polymer Surfaces: Atmospheric Plasma Versus Vacuum Plasma Treatments. Journal of Physics D: Applied Physics. 34(18): 2761.
Elgersma, A. V., Zsom, R. L. J., Norde, W., Lyklema, J. 1990. The Adsorption Of Bovine Serum Albumin On Positively And Negatively Charged Polystyrene Latices. Journal of Colloid and Interface Science. 138(1): 145-156.
Bagchi, P., Birnbaum, S. M. 1981. Effect Of Ph On The Adsorption Of Immunoglobulin G On Anionic Poly(Vinyltoluene) Model Latex Particles. Journal of Colloid and Interface Science. 83(2): 460-478.
Wahlgren, M., Arnebrant, T. 1991. Protein Adsorption To Solid Surfaces. Trends in Biotechnology. 9(1): 201-208.
Webb, K., Hlady, V., Tresco, P. A. 1998. Relative Importance Of Surface Wettability And Charged Functional Groups On NIH 3T3 Fibroblast Attachment, Spreading, And Cytoskeletal Organization. Journal of Biomedical Materials Research. 41(3): 422-430.
Grinnell, F., Phan, T. V. 1983. Deposition Of Fibronectin On Material Surfaces Exposed To Plasma: Quantitative And Biological Studies. Journal of Cellular Physiology. 116(3): 289-296.
Ma, Z., Mao, Z., Gao, C. 2007. Surface Modification And Property Analysis Of Biomedical Polymers Used For Tissue Engineering. Colloids and Surfaces B: Biointerfaces. 60(2): 137-157.
Blanco, T. M., Mantalaris, A., Bismarck, A., Panoskaltsis, N. 2009. The Development Of A Three-Dimensional Scaffold For Ex Vivo Biomimicry Of Human Acute Myeloid Leukaemia. Biomaterials. 31(8): 2243-2251.
Kantlehner, M., Schaffner, P., Finsinger, D., Meyer, J., Jonczyk, A., Diefenbach, B., Nies, B., Hölzemann, G., Goodman, S. L., Kessler, H. 2000. Surface Coating with Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation. ChemBioChem. 1(2): 107-114.
Meng, W., Kim, S.-Y., Yuan, J., Kim, J. C., Kwon, O. H., Kawazoe, N., Chen, G., Ito, Y., Kang, I.-K. 2007. Electrospun PHBV/Collagen Composite Nanofibrous Scaffolds For Tissue Engineering. Journal of Biomaterials Science, Polymer Edition. 18(1): 81-94.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.