Univariate Artificial Neural Network in Forecasting Demand of Low Cost House in Petaling Jaya

Authors

  • Norhisham Bakhary
  • Khairulzan Yahya
  • Chin Nam Ng

DOI:

https://doi.org/10.11113/jt.v40.406

Abstract

Kebelakangan ini ramai penyelidik mendapati ‘Artificial Neural Network’ (ANN) untuk digunakan dalam berbagai bidang kejuruteraan awam. Banyak aplikasi ANN dalam proses peramalan menghasilkan kejayaan. Kajian ini memfokuskan kepada penggunaan siri masa ‘Univariate Neural Network’ untuk meramalkan permintaan rumah kos rendah di daerah Petaling Jaya, Selangor. Dalam kajian ini, beberapa kes bagi sesi latihan dan ramalan telah dibuat untuk mendapatkan model terbaik bagi meramalkan permintaan rumah. Nilai RMSE yang paling rendah yang diperolehi bagi tahap validasi adalah 0.560 dan nilai MAPE yang diperolehi adalah 8.880%. Hasil kajian ini menunjukkan kaedah ini memberikan keputusan yang boleh diterima dalam peramalan permintaan rumah berdasarkan data masa lalu. Kata kunci: Univariate Neural Network, permintaan rumah kos rendah, RMSE, MAPE Recently researchers have found the potential applications of Artificial Neural Network (ANN) in various fields in civil engineering. Many attempts to apply ANN as a forecasting tool has been successful. This paper highlighted the application of Time Series Univariate Neural Network in forecasting the demand of low cost house in Petaling Jaya district, Selangor, using historical data ranging from February 1996 to Appril 2000. Several cases of training and testing were conducted to obtain the best neural network model. The lowest Root Mean Square Error (RMSE) obtained for validation step is 0.560 and Mean Absolute Percentage Error (MAPE) is 8.880%. These results show that ANN is able to provide reliable result in term of forecasting the housing demand based on previous housing demand record. Key words: Time Series Univariate Neural Network, low cost housing demand, RMSE, MAPE

Downloads

Published

2012-01-20

Issue

Section

Science and Engineering

How to Cite

Univariate Artificial Neural Network in Forecasting Demand of Low Cost House in Petaling Jaya. (2012). Jurnal Teknologi (Sciences & Engineering), 40(1), 1-16. https://doi.org/10.11113/jt.v40.406