EEG SUB-BAND SPECTRAL CENTROID FREQUENCY AND AMPLITUDE RATIO FEATURES: A COMPARATIVE STUDY IN LEARNING STYLE CLASSIFICATION
DOI:
https://doi.org/10.11113/jt.v78.4100Keywords:
EEG, learning style, spectral centroid frequency, amplitude ratio, k-nearest neighborAbstract
Learning styles are critical element in constructivism that facilitates the process of knowledge creation. Conventional methods to evaluate the psychological trait however are exposed to reliability issues which stem from cultural and language barriers. Hence, a new assessment approach based on the resting EEG is proposed. The paper presents a comparative study between EEG spectral centroid frequency and ratio features in learning style classification. A total of 68 university students have participated in the study. Kolb’s Learning Style Inventory has been implemented to establish the control groups. EEG is then recorded from the antero-frontal region and preprocessed for noise removal. Subsequently, the spectral centroid frequency and amplitude features are extracted. The amplitude component is further normalized via the ratio method. Synthetic EEG is implemented for dataset enhancement. In general, separate investigation via k-nearest neighbor classifier has shown that the spectral centroid frequency outperforms the amplitude ratio components. Alternatively, combination of both features concurrently can effectively improve the overall classification performance.
References
Cassidy, S. 2004. Learning Styles: An Overview of Theories, Models, and Measures. Educational Psychology. 24(4): 419-444.
Kolb, A. Y. and Kolb, D. A. 2009. Experiential Learning Theory: A Dynamic, Holistic Approach to Management Learning, Education and Development. London: SAGE Publications.
Kolb, A. Y. and Kolb, D. A. 2005. The Kolb Learning Style Inventory–Version 3.1 2005 Technical Specifications. Massachusetts: Hay Resource Direct.
Joy, S. and Kolb, D. A. 2009. Are There Cultural Differences in Learning Style? International Journal of Intercultural Relations. 33(1): 69-85.
Dunn, R. 1990. Understanding the Dunn and Dunn Learning Styles Model and the Need for Individual Diagnosis and Prescription. International Journal of Reading, Writing, and Learning Disabilities. 6(3): 223-247.
Powell, J. L., Parkes, L., Kemp, G. J., Sluming, V., Barrick, T. R. and GarcÃa-Fiñana, M. 2012. The Effect of Sex and Handedness on White Matter Anisotropy: A Diffusion Tensor Magnetic Resonance Imaging Study. Neuroscience. 207: 227-242.
Jaušovec, N. and Jaušovec, K. 2010. Resting Brain Activity: Differences between Genders. Neuropsychologia. 48(13): 3918-3925.
Deco, G., Jirsa, V. K. and McIntosh, A. R. 2013. Resting Brains Never Rest: Computational Insights into Potential Cognitive Architectures. Trends in Neurosciences. 36(5): 268-274.
Lüchinger, R., Michels, L., Martin, E. and Brandeis, D. 2011. EEG–BOLD Correlations During (post-)adolescent Brain Maturation. NeuroImage. 56(3): 1493-1505.
Webster, J. G. 2009. Medical Instrumentation: Application and Design. New Jersey: Wiley.
Mathewson, K. J., Jetha, M. K., Drmic, I. E., Bryson, S. E., Goldberg, J. O. and Schmidt, L. A. 2012. Regional EEG Alpha Power, Coherence, and Behavioral Symptomatology In Autism Spectrum Disorder. Clinical Neurophysiology. 123(9): 1798-1809.
Kam, J. W. Y., Bolbecker, A. R., O'Donnell, B. F., Hetrick, W. P. and Brenner, C. A. 2013. Resting State EEG Power and Coherence Abnormalities in Bipolar Disorder and Schizophrenia. Journal of Psychiatric Research. 47(12): 1893-1901.
Acharya U. R., Vinitha Sree, S., Swapna, G., Martis, R. J. and Suri, J. S. 2013. Automated EEG Analysis of Epilepsy: A Review. Knowledge-Based Systems. 45: 147-165.
Teplan, M. 2002. Fundamentals of EEG Measurement. Measurement Science Review. 2(2): 1-11.
Gray, J. R. and Thompson, P. M. 2004. Neurobiology of Intelligence: Science and Ethics. Nature Reviews Neuroscience. 5(6): 471-482.
van der Knaap, L. J. and van der Ham, I. J. M. 2011. How Does the Corpus Callosum Mediate Interhemispheric Transfer? A Review. Behavioural Brain Research. 223(1): 211-221.
Huang, T. L. and Charyton, C. 2008. A Comprehensive Review of the Psychological Effects of Brainwave Entrainment. Alternative Therapies in Health & Medicine. 14(5): 38-49.
Klimesch, W. 1999. EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Research Reviews. 29(2-3): 169-195.
Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D. and Heine, C. 2002. EEG Alpha Power and Intelligence. Intelligence. 30(3): 289-302.
Motamedi-Fakhr, S., Moshrefi-Torbati, M., Hill, M., Hill, C. M. and White, P. R. 2014. Signal Processing Techniques Applied to Human Sleep EEG Signals—A Review. Biomedical Signal Processing and Control. 10(0): 21-33.
Gajic, B. and Paliwal K. K. 2006. Robust Speech Recognition in Noisy Environments Based on Subband Spectral Centroid Histograms. IEEE Transactions on Audio, Speech, Language Processing. 14(2): 600-608.
Le, P. N., Ambikairajah, E., Epps, J., Sethu, V. and Choi, E. H. C. 2011. Investigation of Spectral Centroid Features for Cognitive Load Classification. Speech Communication. 53(4): 540-551.
Jahidin, A. H., Taib, M. N., Megat Ali, M. S. A., Md Tahir, N., Lias, S., Haron, M. H., Isa, R. M., Omar, W. R. W. and Fuad, N. 2013. Evaluation of Brainwave Sub-Band Spectral Centroid in Human Intelligence. 2013 IEEE 9th International Colloquium on Signal Processing and its Applications. Kuala Lumpur, Malaysia. 8-10 March 2013. 295-298.
Sulaiman, N., Taib, M. N., Lias, S., Murat, Z., Mat Aris, S. A. and Abdul Hamid, N. H. 2011. EEG-based Stress Features Using Spectral Centroids Technique and K-Nearest Neighbor Classifier. 2011 UKSim 13th International Conference on Computer Modelling and Simulation. Cambridge, United Kingdom. 30 March-1 April 2011. 69-74.
Megat Ali, M. S. A., Jahidin, A. H., Md Tahir, N. and Taib, M. N. 2014. Learning Style Classification via EEG Sub-band Spectral Centroid Frequency Features. International Journal of Electrical and Computer Engineering. 4(6): 931-938.
Chaovalitwongse, W. A., Ya-Ju, F. and Sachdeo, R. C. 2007. On the Time Series k-nearest Neighbor Classification of Abnormal Brain Activity. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 37(6): 1005-1016.
Guraliuc, A. R., Barsocchi, P., Potorti, F. and Nepa, P. 2011. Limb Movements Classification Using Wearable Wireless Transceivers. IEEE Transactions on Information Technology in Biomedicine. 15(3): 474-480.
Sowell, E. R., Thompson, P. M., Tessner, K. D. and Toga, A. W. 2001. Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships During Postadolescent Brain Maturation. The Journal of Neuroscience. 21(22): 8819-8829.
Ferreira, L. K. and Busatto, G. F. 2013. Resting-state Functional Connectivity in Normal Brain Aging. Neuroscience & Biobehavioral Reviews. 37(3): 384-400.
Lee, T. -W., Wu, Y. -T., Yu, Y. W. Y., Wu, H.-C. and Chen, T. -J. 2012. A Smarter Brain is Associated with Stronger Neural Interaction in Healthy Young Females: A Resting EEG Coherence Study. Intelligence. 40(1): 38-48.
Neubauer, A. C. and Fink, A. 2009. Intelligence and Neural Efficiency: Measures of Brain Activation versus Measures of Functional Connectivity in the Brain. Intelligence. 37(2): 223-229.
Capotosto ,P., Perrucci, M. G., Brunetti, M., Del Gratta, C., Doppelmayr, M., Grabner, R. H., Klimesch, W., Neubauer, A., Neuper, C., Pfurtscheller, G., Romani, G. L. and Babiloni, C. 2009. Is there “Neural Efficiency†During the Processing of Visuo-Spatial Information in Male Humans? An EEG Study. Behavioural Brain Research. 205(2): 468-474.
Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R. Pfurtscheller, G. 2007. A Fully Automated Correction Method of EOG Artifacts in EEG Recordings. Clinical Neurophysiology. 118(1): 98-104.
Megat Ali, M. S. A., Taib, M. N., Md Tahir, N., Jahidin, A. H. and Yassin, I. M. 2014. EEG Sub-Band Spectral Centroid Frequencies Extraction Based on Hamming and Equiripple Filters: A Comparative Study. 2014 IEEE 10th International Colloquium on Signal Processing and its Applications. Kuala Lumpur, Malaysia. 7-9 March 2014. 199-203.
Jahidin, A. H., Megat Ali, M. S. A., Taib, M. N., Md Tahir, N., Yassin, I. M. and Lias, S. 2014. Classification of Intelligence Quotient via Brainwave Sub-band Power Ratio Features and Artificial Neural Network. Computer Methods and Programs in Biomedicine. 114(1): 50-59.
Goin, J. E. 1984. Classification Bias of the K-Nearest Neighbor Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI-6(3): 379-381.
Field, A. 2009. Discovering Statistics Using SPSS. London: Sage Publications.
Polat, K., Akdemir, B. and Güneş, S. 2008. Computer Aided Diagnosis of ECG Data on the Least Square Support Vector Machine. Digital Signal Processing. 18(1): 25-32.
Kohavi, R. 1995. A study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. 1995 International Joint Conference on Artificial Intelligence. Montreal, Canada. 20-25 August 1995. 1137-1145.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.