A REVIEW OF IRIS RECOGNITION SYSTEM

Authors

  • Arezou Banitalebi Dehkordi Computer Vision, Video, Image Processing Research Lab, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Syed A. R. Abu-Bakar Computer Vision, Video, Image Processing Research Lab, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.4228

Keywords:

Iris pattern recognition, iris biometrics, review

Abstract

Iris recognition system is an accurate biometric system. In recent years, iris recognition is developed to several active areas of research, such as; Image Acquisition, restoration, quality assessment, image compression, segmentation, noise reduction, normalization, feature extraction, iris code matching, searching large database, applications, evaluation, performance under varying condition and multibiometrics. This paper reviews a background of iris recognition and literature of recent proposed methods in different fields of iris recognition system from 2007 to 2015.

References

Wayman, J. 2014. Handbook of Iris Recognition. Biometrics, IET. 3: 41-43.

Daugman, J. 2009. Iris Recognition at Airports and Border-Crossings. Encyclopedia of Biometrics. ed: Springer. 819-825.

2003. Iris Testing of Returning Afghans Passes 200,000 Mark. Available: http://www.unhcr.org/cgi-bin/texis/vtx/search?docid=3f86b4784.

US-VISIT Biometric Identiï¬cation Services. Available: http://www.dhs.gov/xprevprot/programs/gc-1208531081211.shtm.

Canadian Border Services Agency, CANPASS Available: http://cbsa-asfc.gc.ca/publications/pub/bsf5017-eng.html.

United Arab Emirates deployment of iris recognition. Available: http://www.cl.cam.ac.uk/jgd1000/deployments.html.

Iris scans at Amsterdam Airport Schiphol. Available: http://www.schiphol.nl/Travellers/AtSchiphol/Privium/Privium/IrisScans.htm.

Daugman, J. Iris Recognition at Airports and Border-Crossings. Computer Laboratory University of Cambridge, Cambridge. UK.

Browning, K. and Orlans, N. 2014. Biometric Aging.

Daugman, J. and Downing, C. 2013. No Change Over Time is Shown in Rankin et al. Iris Recognition Failure Over Time: The Effects Of Texture. Pattern Recognition. 46: 609-610.

Fenker, S. P., Ortiz, E. and Bowyer, K. W. 2013. Template Aging Phenomenon in Iris Recognition. Access, IEEE. 1: 266-274.

Jain, A. K., Flynn, P. J. and Ross, A. A. 2008. Handbook of Biometrics. Springer.

Ross, A. A., Ross, K. Nandakumar, and Jain, A. K. 2006. Handbook of Multibiometrics. Springer. 6.

CASIA V.3 Iris Image Database Version Three. Available: http://www.cbsr.ia.ac.cn.

Daugman, J. 2006. Probing the Uniqueness and Randomness of Iris Codes: Results from 200 Billion Iris Pair Comparisons. Proceedings of the IEEE. 94: 1927-1935.

Quinn, G., Grother, P. and Tabassi, E. 2013. Standard Iris Storage Formats. Handbook of Iris Recognition. Springer. 55-66.

Daugman, J. 2004. How Iris Recognition Works. Circuits and Systems for Video Technology, IEEE Transactions on. 14: 21-30.

Daugman, J. 2007. New Methods in Iris Recognition. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on. 37: 1167-1175.

He, X., Yan, J., Chen, G. and Shi, P. 2008. Contactless Autofeedback Iris Capture Design. Instrumentation and Measurement, IEEE Transactions on. 57: 1369-1375.

iCAM7000 series. Available: http://www.irisid.com/icam7000series.

Némesin, V. and Derrode, S. 2014. Quality-driven and Real-Time Iris Recognition from Close-Up Eye Videos. Signal, Image and Video Processing. 1-8.

Daugman, J. G. 1993. High Confidence Visual Recognition of Persons by a Test of Statistical Independence. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 15: 1148-1161.

Daugman, J. 1994. Biometric Personal Identification System Based on Iris Analysis. Google Patents.

Wildes, R. P. A., Green, G. L., Hsu, S. C., Kolczynski, R. J., Matey, J. R., and McBride, S. E. 1994. A System for Automated Iris Recognition. IEEE. Workshop on Applications of Computer Vision. 121-128.

Wildes, R. P. A., Green, G. L., Hsu, S. C., Kolczynski, R. J., Matey, J. R., and McBride, S. E. 1996. A Machine Vision System for Iris Recognition. Machine Visual and Application. 9: 1-8.

Wildes, R. P. 1997. Iris Recognition: An Emerging Biometric Technology. Proceedings of the IEEE. 85: 1348-1363.

Boles, W. W. B. B. 1998. A Human Identification Technique Using Images of the Iris and Wavelet Transform. IEEE Transactions on Signal Processing. 46: 1185-1188.

Zhu, Y., Tan, T., and Wang, Y. 2000. Biometric Personal Identification Based on Iris Patterns. Pattern Recognition, International Conference on. 2801-2801.

El-Bakry, H. M. 2001. Fast Iris Detection for Personal Identification Using Modular Neural Networks. IEEE International Symposium on Circuits and Systems. 581-584.

Lim, S., Lee, K., Byeon, O., and T. Kim. 2001. Efficient Iris Recognition Through Improvement of Feature Vector and Classifier. ETRI Journal. 23: 61-70.

Ma, L., Wang, Y., and Tan, T. 2002. Iris Recognition Using Circular Symmetric Filters. 16th International Conference on Pattern Recognition. 414-417.

Sanchez-Avila, C., Sanchez-Reillo, R., and de Martin-Roche, D. 2002. Iris-based Biometric Recognition Using Dyadic Wavelet Transform. IEEE Aerospace and Electronic Systems Magazine. 17: 3-6.

Liam, L. W., Chekima, A., Fan, L. C., and Dargham, J. A. 2002. Iris Recognition Using Self-organizing Neural Network. Research and Development Student Conference SCOReD. 169-172.

Ma, L., Tan, T., Wang, Y., and Zhang, D. 2003. Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. 25: 1519-1533.

Daugman, J. 1993. High Confidence Visual Recognition of Persons by a Test of Statistical Independence. IEEE Transactions on Pattern Analysis and Machine Intelligence. 15: 1148-1161.

Daugman, J. 1994. Biometric Personal Identification System Based on Iris Analysis. Google Patents.

Daugman, J. 2003. The Importance of Being Random: Statistical Principles of Iris Recognition. Pattern Recognition. 36: 279-291.

Wildes, R. P., Asmuth, J. C., Green, G. L., Hsu, S. C., Kolczynski, R. J., and Matey, J. R. 1996. A Machine-vision System for Iris Recognition. Machine Vision and Applications. 9: 1-8.

Monro, D. M. and Zhang, D. 2005. An Effective Human Iris Code with Low Complexity. IEEE International Conference on Image Processing. 3: 277-80.

Monro, D. M., Rakshit, S., and Zhang, D. 2007. DCT-Based Iris Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. 29: 586-595.

Liu, C. and Xie, M. 2006. Iris Recognition Based on DLDA. 18th International Conference on Pattern Recognition. 489-492.

Schuckers, S. A., Schmid, N. A., Abhyankar, A., Dorairaj, V., Boyce, C. K., and Hornak, L. A. 2007. On Techniques for Angle Compensation in Nonideal Iris Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Cybernetics. (B)37: 1176-1190.

Ryan, W. J., Woodard, D. L., Duchowski, A. T., and Birchfield, S. T. 2008. Adapting Starburst for Elliptical Iris Segmentation. 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems. 1-7.

Pundlik, S. J., Woodard D. L., and Birchfield, S. T. 2008. Non-Ideal Iris Segmentation Using Graph Cuts. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 1-6.

Zhou, S. and Sun, J. 2013. A Novel Approach for Code Match in Iris Recognition. IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS). 123-128.

Moghadam, F. M., Ahmadi, A. and Keynia, F. 2013. A New Iris Detection Method based on Cascaded Neural Network. Journal of Computer Sciences and Applications. 1: 80-84.

Li, Y.-h., and Savvides, M. 2009. Fast and Robust Probabilistic Inference of Iris Mask. Proceedings of SPIE. 7306: 730621.

Li, Y.-h., Marios, S. 2013. An Automatic Iris Occlusion Estimation Method Based on High-dimensional Density Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 35: 784-796.

Tan, C.-W. and Kumar, A. 2012. Unified Framework for Automated Iris Segmentation Using Distantly Acquired Face Images. IEEE Transactions on Image Processing. 21: 4068-4079.

Karakaya, M., Barstow, D., Santos-Villalobos, H., and Boehnen, C. 2013. An Iris Segmentation Algorithm based on Edge Orientation for Off-Angle Iris Recognition. IS&T/SPIE Electronic Imaging. 866108-866108.

Radman, A., Zainal, N., and Ismail, M. 2013. Efficient Iris Segmentation based on Eyelid Detection. Journal of Engineering Science and Technology. 8: 399-405.

Uhl, A. and Wild, P. 2012. Weighted Adaptive Hough And Ellipsopolar Transforms for Real-time Iris Segmentation. 5th IAPR International Conference on Biometrics (ICB). 283-290.

Tang, R. and Weng, S. 2011. Improving Iris Segmentation Performance via Borders Recognition. International Conference on Intelligent Computation Technology and Automation (ICICTA). 580-583.

Yadav, D., Kohli, N., Doyle, Singh, J. R., Vatsa, M., and Bowyer, K. W. 2014. Unraveling the Effect of Textured Contact Lenses on Iris Recognition.

Shukri, M., Asmuni, H., Othman, R. M., and Hassan, R. 2013. An Improved Multiscale Retinex Algorithm for Motion-Blurred Iris Images to Minimize the Intra-individual Variations. Pattern Recognition Letters. 34: 1071-1077.

Nigam, A., Anvesh, T., and Gupta, P. 2013. Iris Classification Based on Its Quality. Intelligent Computing Theories. Springer: 443-452.

Othman, N., Houmani, N., and Dorizzi, B. 2015. Quality-Based Super Resolution for Degraded Iris Recognition. Pattern Recognition Applications and Methods. Springer. 285-300.

Rathgeb, C. and Busch, C. 2013. Comparison Score Fusion Towards an Optimal Alignment for Enhancing Cancelable Iris Biometrics. Fourth International Conference on Emerging Security Technologies (EST). 51-54.

Dehkordi, A. B., and Abu-Bakar, S. A. 2013. Noise Reduction in Iris Recognition Using Multiple Thresholding. IEEE International Conference on Signal and Image Processing Applications (ICSIPA). 140-144.

Karn, P., He, X. H., Yang, S., and Wu, X. H. 2014. Iris Recognition Based on Robust Principal Component Analysis. Journal of Electronic Imaging. 23: 063002-063002.

Bazama, A. E., and Hassan, Y. F. 2012. Hybrid System of Cellular Automata, PCA and Support Vector Machine for Noise Reduction and Classification in Human Iris Recognition. IJIIP: International Journal of Intelligent Information Processing. 3: 47-67.

Joshi, N., Shah, C., and Kaul, K. 2012. A novel approach implementation of eyelid detection in biometric applications. Nirma University International Conference on Engineering (NUiCONE).1-6.

Si, Y., Mei, J., and Gao, H. 2012. Novel approaches to improve robustness, accuracy and rapidity of iris recognition systems. IEEE Transactions on Industrial Informatics. 8:110-117.

Bodade, R. M., and Talbar, S. N. 2009. Shift invariant iris feature extraction using rotated complex wavelet and complex wavelet for iris recognition system. Seventh International Conference on Advances in Pattern Recognition. 449-452.

Ring, S. and Bowyer, K. W. 2008. Detection of iris texture distortions by analyzing iris code matching results. 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS). 1-6.

Hollingsworth, K. P., Bowyer, K. W. and Flynn, P. J. 2009. Using fragile bit coincidence to improve iris recognition. IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems (BTAS'09).1-6.

N. Barzegar and M. S. Moin. 2009. A New User Dependent Iris Recognition System Based on an Area Preserving Pointwise Level Set Segmentation Approach. EURASIP Journal on Advances in Signal Processing. 1- 5.

Dozier, G., Bell, D., Barnes, L., and Bryant, K. 2009. Refining Iris Templates via Weighted Bit Consistency. Proc. Midwest Artificial Intelligence and Cognitive Science (MAICS) Conference. 1-5.

Dozier, G., Frederiksen, K., Meeks, R., Savvides, M., Bryant, K., Hopes, D. 2009. Minimizing the Number Of Bits Needed for Iris Recognition via Bit Inconsistency and Grit. IEEE Workshop on Computational Intelligence in Biometrics: Theory, Algorithms, and Applications (CIB 2009). 30-37.

Thainimit, S., Alexandre, L. A., and de Almeida, V. 2013. Iris Surface Deformation and Normalization. 13th International Symposium on Communications and Information Technologies (ISCIT). 501-506.

Lin, M., Ying, H., Haifeng, L., Naimin, L., and Zhang, D. 2014. A CGA-MRF Hybrid Method for Iris Texture Analysis and Modeling. International Conference on Medical Biometrics (ICMB). 1-6.

da Costa, R. M., and Gonzaga, A. 2012. Dynamic Features for Iris Recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 42: 1072-1082.

Zhang, M., Sun, Z., and Tan, T. 2012. Perturbation-enhanced Feature Correlation Filter for Robust Iris Recognition. Biometrics, IET. 1: 37-45.

Zhang, M., Sun, Z., and Tan, T. 2013. Deformed Iris Recognition Using Bandpass Geometric Features and Lowpass Ordinal Features. International Conference on Biometrics (ICB). 1-6.

Zhang, M., Sun, Z., and Tan, T. 2011. Deformable Daisy Matcher for Robust Iris Recognition. 18th IEEE International Conference on Image Processing (ICIP). 3189-3192.

Xiao, L., Sun, Z., He, R., and Tan, T. 2013. Coupled Feature Selection for Cross-Sensor Iris Recognition. IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS). 1-6.

Pillai, J. K., Puertas, M., and Chellappa, R. 2014. Cross-sensor Iris Recognition Through Kernel Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence. 36: 73-85.

Omelina, L., Jansen, B., Oravec, M. and Cornelis, J. 2013. Feature Extraction for Iris Recognition Based on Optimized Convolution Kernels. Image Analysis and Processing–ICIAP Springer. 141-150.

Kang, B. J. and Park, K. R. 2007. Real-time Image Restoration for Iris Recognition Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 37: 1555-1566.

Kalka, N. D., Zuo, J., Schmid, N. A., and Cukic, B. 2010. Estimating and Fusing Quality Factors for Iris Biometric Images. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. 40: 509-524.

Zhang, C., Hou, G., Sun, Z., Tan, T., and Zhou, Z. 2013. Light Field Photography for Iris Image Acquisition. Biometric Recognition. Springer. 345-352.

Lin, J., Li, J.-P., Lin, H., and Ming, J. 2009. Robust Person Identification with Face and Iris by Modified PUM Method. International Conference on Apperceiving Computing and Intelligence Analysis (ICACIA). 321-324.

Gan, J.-Y. and Liu, J.-F. 2009. Fusion and Recognition Of Face and Iris Feature Based on Wavelet Feature and KFDA. International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). 47-50.

Wang, Z., Li, Q., Niu, X., and Busch, C. 2009. Multimodal Biometric Recognition based on Complex KFDA. Fifth International Conference on Information Assurance and Security (IAS'09). 177-180.

Kim, Y. G., Shin, K. Y., Lee, E. C., and Park, K. R. 2012. Multimodal Biometric System Based on the Recognition of Face and Both Irises. Int J Adv Robotic Sy. 9.

Garg, R., Shriram, N., Gupta, V., and Agrawal, V. 2009. A Biometric Security Based Electronic Gadget Control Using Hand Gestures. International Conference on Ultra Modern Telecommunications & Workshops (ICUMT'09).1-8.

Leonard, D., Pons, A. P., and Asfour, S. S. 2009. Realization of a Universal Patient Identifier for Electronic Medical Records Through Biometric Technology. IEEE Transactions on Information Technology in Biomedicine. 13: 494-500.

Wang, X., Zhao, L., and Kong, Q. 2009. Iris Recognition System Design and Development of Large Animals for Tracing Source of Infection. International Joint Conference on Computational Sciences and Optimization (CSO). 610-613.

Dutta, M. K., Gupta, P., and Pathak, V. K. 2009. Biometric Based Unique Key Generation for Authentic Audio Watermarking. Pattern Recognition and Machine Intelligence. Springer. 458-463.

Dutta, M. K., Gupta, P., and Pathak, V. K. 2009. Biometric Based Watermarking in Audio Signals. International Conference on Multimedia Information Networking and Security (MINES'09). 10-14.

Liu-Jimenez, J., Sanchez-Reillo, R., and Fernandez-Saavedra, B. 2011. Iris Biometrics for Embedded Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 19: 274-282.

Vandal, N. A. and Savvides, M. 2010. CUDA Accelerated Iris Template Matching on Graphics Processing Units (GPUs). Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS). 1-7.

Kim, T.-H. and Youn, J.-I. 2013. Development of a Smartphone-based Pupillometer. Journal of the Optical Society of Korea. 17: 249-254.

Sun, Z., Zhang, H., Tan, T., and Wang, J. 2014. Iris Image Classification Based on Hierarchical Visual Codebook. IEEE Transactions on Pattern Analysis and Machine Intelligence. 36: 1120-1133.

McCloskey, S., Au, W., and Jelinek, J. 2010. Iris Capture from Moving Subjects Using a Fluttering Shutter. Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS). 1-6.

Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., and Nakajima, H. 2008. An Effective Approach for Iris Recognition Using Phase-based Image Matching. IEEE Transaction of Pattern Analysis and Machine Intelligence. 30: 1741-1756.

Dehkordi, A. B. and Abu-Bakar, S. A. R. 2015. Adaptive Fuzzy Switching Noise Reduction Filter for Iris Pattern Recognition. Jurnal Teknologi. 73: 1.

Downloads

Published

2015-10-22

Issue

Section

Science and Engineering

How to Cite

A REVIEW OF IRIS RECOGNITION SYSTEM. (2015). Jurnal Teknologi (Sciences & Engineering), 77(1). https://doi.org/10.11113/jt.v77.4228