Image Fusion for Electrodynamics and Optical Dual Mode Tomography System

Authors

  • M. M. Elmajri Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • M. F. Rahmat Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • S. Ibrahim Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • N. F. Mohammed Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • Seriaznita Hj Mat Said Language Academy, Universiti Teknologi Malaysia, Kuala Lumpur, 54100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4241

Keywords:

Image fusion, discrete wavelet transform, principal component analysis, dual mode tomography

Abstract

In this paper, a novel fuzzy fusion method is proposed to combine the images obtained from dual modality (optical and electrodynamics) tomography sensors. The fuzzy rules designed are based on the features of each single mode sensor. Furthermore, the outcome of the proposed method is compared with the two mostly common image fusion methods; principal component analysis (PCA) and discrete wavelet transform (DWT). The fused image results of half flow and full flow solid/gas laboratory phantoms are presented in this paper. Matlab software was used to visualize and analyze the combined images. The results show that the proposed method has produces superior improvement in the quality of fused image for optical and electrodynamics dual mode tomography applications in the case of solid/gas flow.

References

S. Ibrahim, N. F. Mohammed, M. M. Elmajri & N. S. Zahidin. 2011. Imaging of Solid Flow in Air Using Dual Modality Tomography. Jurnal Teknologi. 54: 371–379.

R. Zhang, Q. W. H. Wang, M. Zhang, H. Li. 2014. Data Fusion in Dual-Mode Tomography for Imaging Oil–Gas Two-Phase Flow. Flow Measurement and Instrumentation. 37: 1–11.

N. M. N. Ayob, M. H. F. Rahiman, Z. Zakaria, S. Yaacob & R. Abdul Rahim. 2011. Dual-Plane Ultrasonic Tomography Simulation using Cross-Correlation Technique for Velocity Measurement in Two-Phase Liquid/Gas Flow. International Journal of Electrical and Electronic Systems Research. 4: 46–52.

X. Deng, W. Q. Yang. 2012. Fusion Research of Electrical Tomography with Other Sensors for Two-phase Flow Measurement. Measurement Science Review. 12(2): 62–67.

R. Abdul Rahim, M.H. F. Rahiman, M. Z. Rasif & H. Abdul Rahim. 2011. Image Fusion of Dual-Modal Tomography (Electrical Capacitance and Optical) For Solid/Gas Flow. International Journal of Innovative Computing, Information and Control. 7(9): 5119–5132.

M. J. Pusppanathan, F. R. Yunus, N. M. N. Ayob, R. Abdul Rahim, F. A. Phang, H. Abdul Rahim, L. P. Ling, & K. H. Abas. 2013. A Novel Electrical Capacitance Sensor Design for Dual Modality Tomography Multiphase Measurement. Jurnal Teknologi. 64(5): 43–45.

T. S. Anand, K. Narasimhan, & P. Saravanan. 2012. Performance Evaluation of Image Fusion Using the Multi-Wavelet and Curvelet Transforms. In Advances in Engineering, Science and Management (ICAESM), IEEE International Conference on. 121–129.

R. Redondo, F. Sroubek, S. Fischer, G. Cristobal. 2009. Multi-focus Image Fusion Using the Log-Gabor Transform and A Multi-size Windows Technique. Information Fusion. 10(2): 163–171.

S. V. More, S. D. Apte. 2012. Pixel-Level Image Fusion Using Wavelet Transform. International Journal of Engineering Research & Technology. 1(5): 1–6.

M. F. Rahmat, S. Ibrahim, M. M. Elmajri, N. F. Mohammed, & M. D. Isa. 2010. Dual Modality Tomography System Using Optical and Electrodynamic Sensors for Tomographic Imaging Solid Flow. International Journal on Smart Sensing & Intelligent Systems. 3(3): 389–399.

R. M. Zain, R. A. Rahim, M. H. F. Rahiman, & J. Abdullah. 2010. Simulation of Image Fusion of Dual Modality (Electrical Capacitance and Optical Tomography) in Solid/Gas Flow. Sensing and Imaging: An International Journal. 11(2): 33–50.

K. Rani, R. Sharma. 2013. Study of Different Image fusion Algorithm. International Journal of Emerging Technology and Advanced Engineering. 3(5): 288–291.

Y. Guo, M. Xie, & L. Yang. 2009. An Adaptive Image Fusion Method Based on Local Statistical Feature of Wavelet Coefficients. In Computer Network and Multimedia Technology, (CNMT). IEEE International Symposium on. 1–4.

V. P. S. Naidu, & J. R. Raol. 2008. Pixel-Level Image Fusion Using Wavelets and Principal Component Analysis. Defense Science Journal. 58(3): 338–352.

Z. Dong, Z. Wang, D. Liu, B. Zhang, P. Zhao, X. Tang, & M. Jia. 2013. SPOT5 Multi-Spectral (MS) and Panchromatic (PAN) Image Fusion Using an Improved Wavelet Method Based on Local Algorithm. Computers & Geosciences. 60: 134–141.

L. A. Zadeh. 1965. Fuzzy sets. Information and Control. 8(3): 338–353.

C. H. Seng, A. Bouzerdoum, F. H. C. Tivive, & M. G. Amin. 2010. Fuzzy Logic-Based Image Fusion for Multi-View Through-the-Wall Radar. In Digital Image Computing: Techniques and Applications (DICTA), IEEE International Conference on. 423–428.

Downloads

Published

2015-03-18

How to Cite

Image Fusion for Electrodynamics and Optical Dual Mode Tomography System. (2015). Jurnal Teknologi (Sciences & Engineering), 73(3). https://doi.org/10.11113/jt.v73.4241