Wide Range Analysis of Absorption Spectroscopy Ozone Gas Sensor

Authors

  • Maslina Yaacob Department of Communication Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussien Onn Malaysia, Parit Raja, 86400 Batu Pahat, Malaysia
  • Mohd Rashidi Salim Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tay Ching En Marcus Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Micheal David Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nabihah Hussin Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Haniff Ibrahim Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Hafizah Ngajikin Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Asrul Izam Azmi Light wave Communication Research Group (LCRG), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4247

Keywords:

Absorption spectroscopy, optical fiber sensor, wide range, concentration, ozone, ultraviolet, transmittance, relative error, wavelength

Abstract

A wide range analysis of spectroscopic ozone gas sensor is conducted in order to obtain specific affected wavelength when 616 ppm to 999 ppm of ozone concentration is released into 5 cm gas cell of transmission type. It is observed that by employing different wavelength in ultraviolet region based on spectroscopic ozone detection, obvious differences of transmittance value are obtained for each particular wavelength. Consideration with Twyman-Lothian equation, specific wavelength at 239 nm, 240 nm, 241 nm, 242 nm, 278 nm, 279 nm, 280 nm, 281 nm is proven to achieve wide range of ozone detection when low relative error of concentration is achieved by value of transmittance in range between 0.25 and 0.5.  

References

Langlais B., D. A. Reckhow and D. R. Brink. 1991. Ozone in Water Treatment: Application and Engineering. Lewis Publishers.

Naitou, S. and H. Takahara. 2008. Recent Developments in Food and Agricultural uses of Ozone as an Antimicrobial Agent-Food Packaging Film Sterilizing Machine using Ozone. Ozone: Science & Engineering. 30(1): 81–87.

Cullen, P. J., V. P. Valdramidis, B. K.Tiwari, S. Patil, P. Bourke and C. P. O'Donnell. 2010. Ozone Processing for Food Preservation: An Overview on Fruit Juice Treatment. Ozone: Science & Engineering. 32 (3): 166–179.

Ebeling D., V. Patel, M. Findlay and J. Stetter. 2009. Electrochemical Ozone Sensor and Instrument with Characterization of the Electrode and Gas Flow Effects. Sensors and Actuators B: Chemical. 137(1): 129–133.

Carotta, M. C., A. Cervi, A. Fioravanti, S. Gherardi, A. Giberti, B. Vendemiati, D. Vincenzi and M. Sacerdoti. 2011. A Novel Ozone Detection at Room Temperature through UV-LED-assisted ZnO Thick Film Sensors. Thin Solid Films. 520(3): 939–946.

Thomas, K. H. Starke and Gary, S. V. Coles. 2002. High Sensitivity Ozone Sensors for Environmental Monitoring Produced using Laser Ablated Nanocrystalline Metal Oxides. IEEE Sensor Journal. 2(1).

Chien, F. S. S., C. R. Wang, Y. L. Chan, H. L. Lin, M. H. Chen and R. J. Wu. 2010. Fast-response Ozone Sensor with ZnO Nanorods Grown by Chemical Vapor Deposition. Sensors and Actuators B: Chemical. 144(1): 120–125.

O’Keeffe, S., C. Fitzpatrick, E. Lewis. 2007. An Optical Fibre Based Ultra Violet and Visible Absorption Spectroscopy System For Ozone Concentration Monitoring. Sensors and Actuators B. 125(2007): 372–378.

Lampman, G. M., D. L. Pavia, G. S. Kriz and J. R. Vyvyan. 2010. Spectroscopy. Fourth Edition. International Edition. Mary Finch.

Burrows, J. P., A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal. 1999. Atmospheric Remote-Sensing Reference Data from GOME, Part 2, Temperature-Dependent Absorption Cross Sections of O3 in the 231-794 nm Range. Journal of Quantitative Spectroscopy and Radiative Transfer. 61(4): 509–517.

Smith, B. C. 2002. Quantitative Spectroscopy: Theory and Practice. Amsterdam. Academic Press. 12–13.

Dooly, G., E. Lewis, C. Fitzpatrick and P. Chamber. 2007. Low Concentration Monitoring of Exhaust Gases Using a UV-Based Optical Sensor. IEEE Sensors Journal. 7(5): 685–691.

Manap, H., R. Muda, S. O’Keeffe and E. Lewis. 2009. Ammonia Sensing and a Cross Sensitivity Evaluation with Atmosphere Gases using Optical Fiber Sensor. Procedia Chemistry 1. 959–962

Marcus, T. C. E., M. David, M. Yaacob, M. R. Salim, M. H. Ibrahim, N. H. Ngajikin and A. I. Azmi. 2013. Absorption Cross Section Simulation: A Preliminary Study of Ultraviolet Absorption Spectroscopy for Ozone Gas. Jurnal Teknologi (Science & Engineering). 64(2): 95–98.

Marcus, T. C. E., M. David, M. Yaacob, M. R. Salim, N. Hussin, M. H. Ibrahim, N. H. Ngajikin and A. I. Azmi. 2014. Interchangeable Range of Ozone Concentration Simulation for Low Cost Reconfigurable Brass Gas cell. Jurnal Teknologi (Science & Engineering). 60(2014): 1–5.

Hughes, H. K. 1963. Beer’s Law and the Optimum Transmittance in Absorption Measurements. Applied Optics. 2(9): 937–945.

Teranishi K., Y. Shimada, N. Shimomura and H. Itoh. 2013. Investigation of Ozone Concentration Measurement by Visible Photo Absorption Method. Ozone: Science and Engineering: The Journal of the International Ozone Association. 35(3): 229–239.

Downloads

Published

2015-03-18

How to Cite

Wide Range Analysis of Absorption Spectroscopy Ozone Gas Sensor. (2015). Jurnal Teknologi (Sciences & Engineering), 73(3). https://doi.org/10.11113/jt.v73.4247