Magnetic Induction Tomography: A Brief Review
DOI:
https://doi.org/10.11113/jt.v73.4252Keywords:
Magnetic induction, conductivity, coils, algorithmAbstract
Magnetic Induction Tomography (MIT) is a contactless non-invasive imaging technique that interested in mapping the passive electrical properties of a material; conductivity, permittivity and permeability. This paper presents the criteria and previous functional specification involving the development of MIT, focusing in conductivity imaging. Various ways have been implemented from a simple electronic configuration of the front-end sensory circuit, data acquisition system, reconstruction algorithm and graphical user interfacing (GUI) tools. Induction sensors are paramount as it does provide the signal source for time varying magnetic field to the coils. The advantages and limitations of MIT are also presented. Many more advancement can be expected to enhance the lack of MIT especially in spatial resolution and dynamic response of the sensor.Â
References
Wei, H.Y., and Soleimani, M. 2012a. A Magnetic Induction Tomography System for Prospective Industrial Processing Applications. Chinese Journal of Chemical Engineering. 20: 406–410.
Ziolkowski, M. and Gratkowski, S. 2009. Weighted Sum Method and Genetic Algorithm Based Multiobjective Optimization of an Exciter for Magnetic Induction Tomography. Theoretical Engineering (ISTET), 2009 XV International Symposium on. 1–5.
Zinan, L., Zheng, X., and Haijun, L. 2008. The Application of Magnetic Sensor in MIT. Automation Congress, WAC2008 World, VDE VERLAG Conference Proceedings. 1–4.
Griffiths, H. 2001. Magnetic Induction Tomography. Measurement Science and Technology. 12: 1126.
Trakic, A., Eskandarnia, N., Li, B. K., Weber, E., Wang, H., Crozier, S. 2012. Rotational Magnetic Induction Tomography. Measurement Science and Technology. 23: 025402.
Zakaria, Z., Rahim, R. A., Mansor, M. S. B., Yaacob, S., Ayub, N. M. N., Muji, S. Z. M., Rahiman, M. H. F., and Aman, S. M. K. S. 2012. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography. Sensors. 12: 7126–7156.
Gabriel, C., Gabriel, S. and Corthout, E. 1996. The Dielectric Properties of Biological Tissues: I. Literature Survey. Physics in Medicine and Biology. 41: 2231.
Peyton, A. J., Yu, Z. Z., Lyon, G., Al-Zeibak, S., Ferreira, J., Velez, J., Linhares, F., Borges, A. R., Xiong, H. L., Saunders, N. H. and Beck, M. S. 1996. An Overview of Electromagnetic Inductance Tomography: Description of Three Different Systems. Measurement Science and Technology. 7: 261.
Scharfetter, H., Casanas, R. and Rosell, J. 2003. Biological Tissue Characterization by Magnetic Induction Spectroscopy (MIS): Requirements and Limitations. Biomedical Engineering, IEEE Transactions on. 50: 870–880.
Tumanski, S. 2007. Induction Coil Sensors—A Review. Measurement Science and Technology. 18: R31.
Soleimani, M., and Tamburrino, A. 2006. Shape Reconstruction in Magnetic Induction Tomography Using Multifrequency Data. Int. J. Inf. Syst. Sci. 2: 343–353.
Yu, Z. Z., Peyton, A. J., Xu, L. A., and Beck, M. S. 1998. Electromagnetic Inductance Tomography (EMT): Sensor, Electronics and Image Reconstruction for A System With A Rotatable Parallel Excitation. IEE Proceed. Sci. Meas. Technol. 145: 20–25.
Stawicki, K., Gratkowski, S., Komorowski, M., and Pietrusewicz, T. 2009. A New Transducer for Magnetic Induction Tomography. IEEE Trans. Magn. 45: 1832–1835.
Gatzen, H. H., Andreeva, E., and Iswahjudi, H. 2002. Eddy-current Microsensors Based on Thin-Film Technology. IEEE Trans. Magn. 38: 3368–3370.
Riedel, C. H., Keppelen, M., Nani, S., Merges, R. D. and Dossel, O. 2004. Planar System for Magnetic Induction Conductivity Measurement using a Sensor Matrix. Physiol Meas. 25(1): 403–11.
Scharfetter, H., Merwa, R. and Pilz, K. 2004. A New Type of Gradiometer for the Receiving Circuit of Magnetic Induction Tomography (MIT). Translated by.
Scharfetter, H., Merwa, R., and Pilz, K. 2005. A New Type of Gradiometer for the Receiving Circuit of Magnetic Induction Tomography (MIT). Physiol Meas. 26(2): S307–18.
Liu, R., Li, Y., You, F., Shi, X., Fu, F., and Dong, X. 2008. Preliminary Imaging Results of Magnetic Induction Tomography Based on Physical Phantom, Engineering in Medicine and Biology Society. 30th Annual International IEEE EMBS Conference. 4559–4562.
Liu, G., Wang, T., and Meng, M. 2005. A Fast Reconstruction Method for Magnetic Induction Tomography. IEEE Proceedings of Engineering in Medicine and Biology. 1663–1664.
Yin, W. and Peyton, A. J. 2006. A Planar EMT System for The Detection of Faults On Thin Metallic Plates. Measurement Science and Technology. 17: 2130.
Merwa, R., and Scharfetter, H. 2007. Magnetic Induction Tomography: A Feasibility Study of Brain Oedema Detection using a Finite Element Human Head Model. IFMBE Proceedings. 17: 480–483.
Hamsch, M., Igney, C. H. and Vauhkonen, M. 2007. 16 Channel Magnetic Induction Tomography System Featuring Parallel Readout. Translated by Graz, Austria.
Patz, R., Watson, S., Ktistis, C., Hamsch, M. and Peyton, A. J. 2010. Performance of a FPGA-based Direct Digitising Signal Measurement module for MIT. Journal of Physics: Conference Series. 224: 1–4.
Watson, S., Wee, H. C., Griffiths, H., and Williams, R. J. 2011. A Highly Phase-Stable Differential Detector Amplifier for Magnetic Induction Tomography. Physiological Measurement. 32: 917.
Igney, C. H., Watson, S., Williamson, S. J., Griffiths, H. and Dössel, O. 2005. Design and Performance of A Planar-Array MIT System With Normal Sensor Alignment. Physiological Measurement. 26(2): S263–S278.
Scharfetter, H., Kostinger, A., and Issa, S. 2008. Hardware for Quasi-Single-Shot Multifrequency Magnetic Induction Tomography (MIT): The Graz Mk2 System Physiol. Meas. 29: S431–43
Wei, H. Y., and Soleimani, M. 2012. Hardware and Software Design for a National Instrument-Based Magnetic Induction Tomography System for Prospective Biomedical Applications. Physiological Measurement. 33: 863.
Metherall, P., Barber, D. C., Smallwood, R. H., and Brown, B. H. 1996. Three-Dimensional Electrical Impedance Tomography. Nature. 380: 509–12.
Forsman, K. 2000. Intragastric Movement Assessment by Measuring Magnetic Field Decay of Magnetised Tracer Particles in a Solid Meal. Med. Biol. Eng. Comput. 38(2): 169–74.
Pham. M., H., Hua, Y., and Gray, N., B. 1999. Eddy Current Tomography for Metal Solidification Imaging. Proc. 1st World Congrss on Industrial Process Tomography, Buxton, UK, 14–17 April. 451–8.
Griffiths, H., Stewart, W., R., and Gough, W. 1999. Magnetic Induction Tomography: A Measuring System for Biological Tissues. Ann. NY Acad. Sci. 873: 335–45
Peyton, A. J., Beck, M. S., Borges, A. R., Oliveira, J. E., Lyon, G. M., Yu, Z. Z., Brown, M. W., and Ferrerra, J. 1999. Development of Electromagnetic Tomography (EMT) for Industrial Applications. Part 1: Sensor Design and Instrumentation. 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, April 14-17, 1999. 306–312.
Scharfetter, H., Lackner, H. K., and Rosell, J. 2001. Magnetic Induction Tomography: Hardware for Multifrequency Measurements in Biological Tissues Physiol. Meas. 25: 131–46.
Rosell, J., Casanas, R., and Scharfetter, H. 2001. Sensitivity Maps and System Requirements for Magnetic Induction Tomography using A Planar Gradiometer Physiol. Meas. 22: 121–30.
Z. Zakaria, M. F. Jumaah, M. S. B. Mansor, M. Mat Daud, M. H. Fazalul Rahiman, R. Abdul Rahim. January 2011. Initial Results On Medium Frequency Electromagnetic Field Penetration In Biological Soft Tissue. Jurnal Teknologi-Special Issue on Instrumentation & Sensor Technology. Universiti Teknologi Malaysia. 54: 69–77.
N. M. Nor Ayob, Z. Zakaria, M. H. Hafiz Fazalul Rahiman, R. Abdul Rahim, S. Yaacob. August 2011. Initial Development On Magnetic Induction Tomography Imaging. Jurnal Teknologi-Special Issue on Instrumentation & Sensor Technology. Universiti Teknologi Malaysia. 55(2): 11–14.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.