Introducing an Application of a Charged Coupled Device (CCD) in an Optical Tomography System
DOI:
https://doi.org/10.11113/jt.v73.4253Keywords:
Tomography, optical tomography, Charged Coupled Device (CCD), applicationsAbstract
A tomographic system is a method used for capturing an image of an internal object section. Optical tomography is one method which widely used in medical and industrial fields. This paper reviews several applications of Charged Coupled Devices (CCD) and introduces an application of a CCD in an optical tomography system. Most of the previous research used this component for displacement measurement and as a video camera. This paper discusses its basic principle of operation, basic construction, its criteria, application, and its advantages compared to other optoelectronic sensors available in today’s market. The applications of this sensor in fields such as astronomy and medical has proved the ability and the good performance of CCD in capturing images. This sensor should widen its usage in optical tomography fields because it can give high performance in image reconstruction.Â
References
J. Jamaludin, R. A. Rahim, M. S. Beck, T. Dyakowski, R. A. Williams, F. Rahman, N. A. Nor Muzakkir and M. R. A. Suzzana. 2013. A Review of Tomography System. Jurnal Teknologi UTM. 64(5): 47–51.
R. A. Rahim. 2011. Principles, Technique and Applications. In Optical Tomography System. Malaysia, University Technology Malaysia.
M. Beck, T. Dyakowsky and R. Williams. 1998. Process Tomography-the State of the Art. Transactions of the Institute of Measurement and Control, 22(4): 163–177.
J. Jamaludin, R. A. Rahim, H. B. A. Rahim, N. S. M. Fazli, M. H. F. Rahiman and S. Z. B. M. Muji. 2014. A Review on Optical Tomography System. Jurnal Teknologi. 69(8): 1–6.
R. A. Rahim, R. Green, N.Horbury, B. N. F.J. Dickin and T. Pridmore. 1996. Further Development of a Tomographic Imaging System Using Optical Fibres for Pneumatic Conveyors. Measurement Science and Technology. 7(3): 419.
Y. M. Yunos, M. S. B. Mansor, N. M. N. Ayob, P. J. Fea, R. A. Rahim and C. K. San. 2012. Infrared Tomography Sensor Configuration Using 4 Parallel Beam Projections. Jurnal Teknologi. 55(1): 101–111.
N. Ramli, M. Idroas, M. N. Ibrahim and N. H. Shafei. 2013. Design of the Optical Tomography System for Four Projections CMOS Linear Image Sensor. Jurnal Teknologi. 61(2).
M. Idroas. 2004. Thesis: A Charged Coupled Device Based Optical Tomographic Instrumentation System for Particle Sizing, Sheffield Hallam University.
Arai, Toshiki, J. Yonai, T. Hayashida, H. Ohtake and a. T. G. E. Harry van Kuijk. 2013. A 252-V/Lux.s, 16.7 Million Frame per Second 312-kpixel Back Side Illuminated Ultrahigh Speed Charged Coupled Device. IEEE Transaction on Electron Devices. 60(10): 3450–3458.
A History of Innovation. Spectral Instruments, Inc, 2001. [Online]. Available: http://www.specinst.com/What_Is_A_CCD.html#versus. [Accessed 21 3 2014].
SensorCleaning.com. SensorCleaning.com, 2010. [Online]. Available: http://www.sensorcleaning.com/whatisasensor.php. [Accessed 20 3 2014].
C. Buil. 1991. Principles and Performance of the CCD. In Charged Coupled Device(CCD) Astronomy, Virginia, Willman Bell Inc. 1–2.
B. J. T. and a. C. L. Chen. 1977. An Integrated Optical Waveguide and Charged Coupled Device Image Array. Quantum Electronics, IEEE Journal. 13(4): 282–287.
Leaders in High Defination CMOS Cameras, Megapixel CmOS Sensor Processor and Image Visualisation System. Silicon Imaging, [Online]. Available: http://www.siliconimaging.com/ARTICLES/CMOS%20PRIMER.htm. [Accessed 20 3 2014].
S. Kawamoto, Y. Watanabe and Y. Narabu. 1991. A CCD Colour Linear Image Sensor Employing New Transfer Method. Consumer Electronics, IEEE Transactions. 37(3): 481–486.
Etoh, T. Goji, D. Poggeman, G. Kreider, H. Mutoh, A. J. Theuwissen, A. Ruckelshausen and Y. Kondo. 2003. An Image Sensor which Captures 100 Consecutive Frames at 1000000 frames/ second. IEEE Transaction on Electron Device. 50(1): 144–151.
F. J., D. H. Alexander, Su and R. M. F. a. S. C. 1974. An Extrinsinc Silicon Charge Coupled Device for Detecting Infrared Radiation. In Electron Devices Meeting (IEDM).
D. Barbe, W. Baker and K. Davis. 1980. Signal Processing with Charged Coupled Device. In Topics in Applied Physics: Charged Coupled Device. New York, Springer Verlag Berlin. 91–97.
Sony, Data Sheet for ILX 555K, Sony.
Sony, Data Sheet for ILX 551A, Sony.
P. I. Khalid, R. Sudirman and S. H. Ruslan. 2002. Electronic 1. Johore, Malaysia: Universiti Teknologi Malaysia.
Tian-ze, F. W. Li, L. Heng-wei and a. M. Li-xiu. 2009. Study on the Treatement Technology and Application of Charged Coupled Device. In Image and Signal Processing. 1–5.
J. Goa, Z. Zhang, R. Yao, J. Sun and Y. Zhang. 2011. A Robust Removal Method for Inter Frame Charged Coupled Device Star Images. In Seventh International Conference on Natural Computation.
C. Buil. 1991. Principle and Performance of CCD. In CCD Astronomy: Contruction and Use of an Astronomical CCD Camera, Virginia, Willmann Bell Inc. 26–28.
R. Pierce. 2014. Standard Deviation and Variance. Math Is Fun. [Online]. Available: http://www.mathsisfun.com/data/standard-deviation.html. [Accessed 24 3 2014].
M. Jay. 2011. What Wavelenght Goes with Colour ? National Aeronoutic and Space Administration. [Online]. Available: http://scienc e-edu.larc.nasa.gov/EDDOCS/Wavelengths_for_Colors.html. [Accessed 24 3 2014].
C. Buil. 1991. Principles and Performances: Transfer Efficiency. In CCD Astronomy: Construction and use of an Astronomical CCD Camera. Virginia, Willmann Bell Inc. 29–30.
K. S. L., E. G. Stevens, J. C. Cassidy, W. C. Chang, P. Roselle, W. A. Miller and M. Mehra. 1990. A Large Area 1.3 Mega Pixel Full Frame CCD Image Sensor with a Lateral Overflow Drain and Transparent Gate Electrode. Electron Devices Meeting. 287–290.
D. Poli. 2003. Georeferencing of multi line CCD Array Optical Sensors with a General Photogrammetric Model. Geoscience and Remote Sensing Symposium. 3908–3910.
C. Buil. 1991. The Electronics of a CCD Camera. In Charged Coupled Device : Astronomy, Virginia. Willmann Bell Inc. 56–57.
S. I. T. (SItes). Inc. 1994. An Introduction to Scientific Imaging Charged Coupled Devices. United State.
P. Felber. 2000. Charged Coupled Device. Illinois Institute of Technology.
Gao, Jianwei, Z. Zhang, R. Yao, J. Sun and a. Y. Zhang. 2011. A Robust Smear Removal Method for Interframe Charged Coupled Device Star Images. Natural Computation. 3: 1805–1808.
Scientific Detector System. Photonic Science, [Online]. Available: http://www.photonic-science.com/. [Accessed 20 3 2014].
Karellas, Andrew, H. Liu, C. Reinhardt, L. J. Harris and a. A. B. Brill., 1993. Imaging of Radionuclide Emissions with a Low Noise Charged Coupled Device. Nuclear Science, IEEE Transactions. 40(4): 979–982.
Shott, J. D., R. D. Melen and a. J. D. Meindl. 1980. Charged Coupled Device for use in Electronically Focused Ultrasonic Imaging System. Communications, Radar and Signal Processing. 127(2): 144–154.
N. Suzuki, T. Yamada, H. Sekins and H. Goto. 1982. A CCD Linear Image Sensor. IEEE International Solid State: Optoelectronic Circuit. 127: 34–36.
Li, Q-P., F. Ding and a. P. Fang. 2006. Flash CCD Laser Displacement Sensor. Electronics Letters. 42(16): 910–912.
Hong, Zhao, W. Xuan and a. W. Rui, "High speed on line measurement of digital wire outer diameter with laser and CCD technology," Nagoya, Japan, 2003.
Zhou, Awei, J. Guo and a. W. Shao, "Automated detection of surface defects on sphere parts using laser and CDD measurements," 2011.
Y. Ni, W. Yu-tian, L. Jiang-tao and a. L. Huan-huan., "Research on Thickness Measurement of Transparent Object Based on CCD Vision System," 2009
Yanjun, Xiao, W. Zhifeng, L. Lei and a. G. Yuming, "Research and application on the detection of zinc-air battery electrode thickness using Laser-CCD technology," 2009.
Fei, Zhigen, J. Guo, J. Wang and a. G. Luo, "The application of laser and CCD compound measuring method on 3D object detection," 2010.
Wang, C. C., S. W. Shyue, H. C. Hsu, J. S. Sue and a. T. C. Huang, "CCD camera calibration for underwater laser scanning system.," 2001.
D. Poli, "Georeferencing ogf Multi Line CCD Array Optical Sensors with a General Photogrammetric Model," Geoscience and Remote Sensing Symposium, vol. 6, pp. 3908-3910, 2003.
M. S. Z. Mohd, R. A. Rahim, M. H. F. Rahiman, S. Sahlan, M. F. A. Shaib, M. Jaysuman and a. E. J. Mohamad., "Optical tomography: a review on sensor array, projection arrangement and image reconstruction algorithm.," International Journal of Innovative Computing, Information and Control 7, vol. 7, pp. 1-17, 2011.
E.E.Michaelides, Particles, Bubbles and Drops; The motion, heat and mass transfer, Singapore: World Scientific, 2007.
Sensorion The Sensor Company, 1998. [Online]. Available: http://www.sensirion.com. [Accessed 18 10 2013].
R.G.Jackson, The Development of Optical System for Process Imaging. Process Tomography: Principle, Technique, and Applications, Oxford: Butterworth-Heinemann, 1995.
S. Ibrahim and R.G.Green, "Optical fibre sensors for imaging concentration profile," in Semiconductor Electronics, ICSE, 2002.
Yan, Chunsheng, Y. Liao, S. Lai, J. Gong and a. Y. Zhao, "A Novel Optical Fibre Process Tomography Structure for Industry Process Control," Measurement Science and Technology, vol. 13, no. 12, 2002.
N. Ramli, M. Idroas, M. N. Ibrahim and N. H. Shafei, "Design of the Optical Tomography System for Four Projections CMOS Linear Image," Jurnal Teknologi, pp. 1-7, 2012.
M. Y. Yusri, M. S. B. Mansor, N. M. N. Ayob, P. J. Fea, R. A. Rahim and a. C. K. San, "Infrared Tomography Sensor Configuration Using Four Parallel Beam Projection," Jurnal Teknologi, vol. 55, no. 1, pp. 101-111, 2012.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.