A Review Relations of Optical Tomography and Optical Coherance Tomography
DOI:
https://doi.org/10.11113/jt.v73.4255Keywords:
Optical tomography, optical coherence tomography, light source, interferometerAbstract
Optical Tomography (OT) is a form of computed tomography using a digital model of the volume of an object by reconstructing an image of the light transmitted and scattered by the object. OT is used mostly as a form of research in medical imaging. OT depends on the reference object being at least partially light transmitting or translucent, so it works best on soft tissue, such as breast and brain tissue. Optical Coherence Tomography (OCT) is a new technology for performing high-resolution cross-sectional imaging. OCT is similar to ultrasound imaging, but uses different types of light instead of sound. OCT can provide cross-sectional images of tissue structure on the micrometer scale and in real time. OCT serves as a kind of optical biopsy and is used as a medical diagnostic imaging technology because, unlike conventional histopathology, it does not require the removal and processing of tissue specimens for microscopic examination. The study was carried out to see how the two types of optical imaging and the use of concepts and components used in the system. The light source is used to show different levels of penetration and resolution for both methods is used. The use of an interferometer in optical imaging applications is discussed along with examples of commonly used methods. The optical imaging method contributes significantly to the diversity of tomography systems.References
Norhafizah Ramli & Siti Syazalina Mohd Sobani. 2013. Four Projections CMOS Linear Image Sensor Tomographic Image Reconstruction. Jurnal Teknologi (Sciences & Engineering). 61(2): 19–83. ww.jurnalteknologi.utm.my. eISSN 2180–3722.
Cutler M. 1929. Transillumination As An Aid In The Diagnosis Of Breast Lesions. Surg Gynecol Obstet. 48: 721.
Olhsson B, Gunderson J, Nilsson D. M. 1980. Diaphanography: A Method For Evalution Of The Female Breast. World J Surg. 4: 701–7.
Carlsen E. N. 1982. Transillumination Light Scanning. Diag Imag. 3: 658–664.
Green, R. G., Horbury, N. M., Abdul Rahim, R., Dickin, F. J., Naylor, B. D. and Pridmore, T. P. 1995. Optical Fibre Sensors For Process Tomography. Meas. Sci. Technol. 6: 1699–1704.
M. Fadzli Abdul Shaib, Ruzairi Abdul Rahim, Siti Zarina M. Muji, Naizatul Shima, Mohd Zikrillah Zawahir. 2013. Comparison Between Two Different Types of Microcontroller in Developing Optical Tomography Controller Unit. 64(5): 13–17. www.jurnalteknologi.utm.my. eISSN 2180–3722.
C. Yan, J. Zhong, Y. Liao, S. Lai, M. Zhang, and D. Gao. 2005. Design Of An Applied Optical Fiber Process Tomography System. Sensors And Actuators. 104: 324–331.
S. Z. M. Muji. 2011. Optical Tomography: A Review On Sensor Array, Projection Arrangement and Image Reconstruction Algorithm. International Journal of Innovative Computing. Information and Control. 7(7): 1–17.
Huang D., Swanson E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., Fujimoto J. G. 1991. Optical Coherence Tomography. Science. 254: 1178–1181.
Fujimoto J. G., Brezinski M. E., Tearney G. J., Boppart S. A., Bouma B., Hee M. R., Southern J. F., Swanson E. A. 1995. Optical Biopsy And Imaging Using Optical Coherence Tomography. Nature Med. 1: 970–972
Brezinski, M. E., Fujimoto, J. G. 1999. Optical Coherence Tomography: High Resolution Imaging in Nontransparent Tissue. IEEE J. Sel. Topics Quant. Electron. 5(4): 1185–1192.
Fujimoto, J. G., Pitris, C., Boppart, S. A., Brezinski, M. E. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia 2: 9–25.
Takada K., Yokohama I., Chida K., Noda J. 1987. New Measurement System For Fault Location In Optical Waveguide Devices Based On An Interferometric Tchnique. Appl. Opt. 26: 1603–1608.
Youngquist, R. C., Carr, S., Davies, D. E. N. 1987. Optical Coherence-Domain Reflectometry: A New Optical Evaluation Technique. Opt. Lett. 12: 158–160.
Gilgen, H. H., Novak, R. P., Salathe, R. P., Hodel, W., Beaud, P. 1989. Submillimeter Optical Reflectometry. IEEE J. Lightwave Technol. 7: 1225–1233.
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J.G. Fujimoto. 1991. Optical Coherence Tomography. Science. 254: 1178–1181.
A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann,. 1993. In Vivo Optical Coherence Tomography. Ophthalmol. 116: 113–114.
J. M. Schmitt, A. Kn¨uttel, M. Yadlowsky, R. F. Bonner. 1994. Opticalcoherence Tomography Of A Dense Tissue: Statistics Of Attenuation And Backscattering. Phys. Med. Biol. 42: 1427–1439.
J. M. Schmitt, M. Yadlowsky, R. F. Bonner. 1995. Subsurface Imaging If Living Skin With Optical Coherence Tomography. Dermatol. 191: 93–98.
J. G. Fujimoto., M. E. Brezinski., G. J. Tearney., S. A. Boppart., B. E. Bouma., M. R. Hee., J. F. Southern, and E. A. Swanson. 1995. Optical Biopsy And Imaging Using Optical Coherence Tomography. Nature Med. 1: 970–972.
R. C. Youngquist., S. Carr., D. E. N. Davies. 1987. Optical Coherence Domain Reflectometry: A New Optical Evaluation Technique. Opt. Lett. 12: 158–160.
K. Takada, I. Yokohama, K. Chida, and J. Noda,. 1987. New Measurement System For Fault Location In Optical Waveguide Devices Based On Interferometric Technique. Appl. Opt. 26: 1603–1606.
W. Clivaz, F. Marquis-Weible, R. P. Salathe, R. P. Novak, and H. H. Gilgen. 1992. High Resolution Reflectometry In Biological Tissue. Opt. Lett. 17: 4–6.
J. M. Schmitt, A. Kn¨uttel, and R. F. Bonner,. 1993. Measurement Of Optical Properties Of Biological Tissues By Low Coherence Reflectometry. Appl. Opt. 32: 6032–6042.
M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto. 1995. Optical Coherence Tomography Of The Human Retina. Arch. Ophthalmol. 113: 326–332.
S. A. Boppart, M. E. Brezinsk, B. E. Boump, G. J. Tearney, and J. G. Fujimoto. 1996. Investigation Of Developing Embryonic Morphology Using Optical Coherence Tomography. Dev. Biol. 177: 54–64.
Y. Pan, E. Lankenau, J. Welzel, R. Birngruber, and R. Engelhardt. 1996. Optical Coherence Gated Imaging Of Biological Tissues. IEEE J. Select. Topics Quantum Electron. 2: 1029–1034.
C. Passmann and H. Ermert. 1996. A 100 MHz Ultrasound Imaging System For Dermatologic And Ophthalmologic Diagnostics. IEEE Trans. Ultrason. Ferroelect., Freq. Contr. 43: 545–552.
J. M. Schmitt. 1999. Optical Coherence Tomography: A Review. IEEE Journal of Selected Topic in Quantum Electronic. 5(4): 1205–1215.
Drexler, W. & Fujimoto, J. G. 2008. State Of The Art Retinal Optical Coherence Tomography. Progress In Retinal And Eye Research. 27: 45–88.
Huang, D., Swanson, E. A., Lin, C. P. 1991. Optical Coherence Tomography. Science. 254: 1178–1181.
Smith, L. M. Dobson, C. C. 1981. Absolute Displacement Measurements Using Modulation Of The Spectrum Of White Light In A Michelson Interferometer. Appl. Opt. 28(15): 3339–3342.
D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto. 1991. Optical Coherence Tomography. Science. 254: 1178–1181.
Z. Mohd. Muji, R. Abdul Rahim and M. Morsin. 2009. Criteria For Sensor Selection In Optical Tomography. IEEE Symposium On Industrial Electronics And Applications. Best Western Premier Seri Pacific Hotel, Kuala Lumpur.
R. G. Green, R. Abdul Rahim, K. Evans, F. J. Dickin, B. D. Naylor, and T. P. Pridmore. 1998. Concentration Profiles In A Gravity Chute Conveyor By Optical Tomography Measurement. Powder Technology. 95(1): 49–54.
S. Ibrahim, R. G. Green, K. Dutton, and R. Abdul Rahim. 2002. Lensed Optical Fiber Sensors For On Line Measurement Of Flow. ISA Transactions. 41(1): 13–8.
N. Zeng, S. Lai and Y. Liao. 2001. Optical Tomography For Two Phase Measurement. Proc. of SPIE The International Society for Optical Engineering. 4448: 341–347.
P. Dugdale, R. G. Green, A. J. Hartley, R. G. Jackson and J. Laundauro. 1994. Characterization Of Single Bubles By An optical Tomography System. European Concerted Action on Process Tomography.
R. Abdul Rahim, K. T. Chiam, M. J. Pusppanathan. Y. S. L. Susiapan. 2009. Embedded System Based Optical Tomography: The Concentration Pro_Le. Sensor Review. 29(1): 54–62.
S. Ibrahim, R. G. Green, K. Dutton, K. Evans, R. A. Rahim, and A. Goude. 1999. Optical Sensor Configurations For Process Tomography. Meas. Sci. Technol. 10: 1079–1086.
R. A. Rahim, P. J. Fea, C. K. San, and M. H. Fazalul Rahiman. 2006. Optical Tomography: Infrared Tomography Sensor Configuration Using 4 Parallel Beam Projections. Sensors & Transducers. 72(10): 761–768.
R. A. Rahim, L. C. Leong, K. S. Chan, S. Sulaiman, J. F. Pang. 2005. Tomographic Imaging: Multiple Fan Beam Projection Technique Using Optical Fibre Sensors. Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering. 1st International Conference on 14–16 Nov. 2005: 115–119.
Green, R. G. 1998. Concentration Profiles In A Gravity Chute Conveyor by Optical Tomography Measurement. Journal Powder Technology. 95: 49–54.
Investigating Multiple Fan Beam Projection Technique Using Optical Fibre Sensor In Process Tomography, Ruzairi Abdul Rahim, Leong Lai Chen, Chan Kok San & Mohd. Hafiz Fazalul Rahiman. 2007. Jurnal Teknologi. Universiti Teknologi Malaysia. Skudai. Malaysia 47: 61–70.
R. G. Jackson. 1995. The Development of Optical Systems for Process Imaging in Process Tomography. Butterworth Heinemann.
R. Abdul Rahim and K. S. Chan. 2004. Optical Tomography System for Process Measurement using LED As A Light Source. Optical Engineering. 43: 1251–1257.
Vladimir Shidlovski. 2004. Superluminescent Diodes: Short Overview Of Device Operation Principles And Performance Parameters. Superlum Diodes Ltd. Carrigtwohill, Co. Cork, Ireland. 7–8.
L. H. Hong., A. Yahaya., Y. Munajat. 2014. Determination of Optical Path Difference of White Light Fibre Interferometer Using Peak Tracking Method. Jurnal Teknologi. Department of Physics, Faculty of Science, Universiti Teknologi Malaysia. 71(5): 79–82.
Tearney, G. J., Brezinski, M. E., Southern, J. F., Bouma, B. E., Boppart, S. A., Fujimoto J. G. 1997. Optical Biopsy In Human Gastrointestinal Tissue Using Optical Coherence Tomography. Am J Gastroenterol. 92: 1800–4
K. P. Zetie, S. F. Adams, R. M. Tocknell. 2000. How Does A Mach-Zehnder Interferometer Work. Physics Dept. Westminter School. London SW1 3PB. UK. 38(1): 46–48.
Lipson, S. G., Lipson, H., Tannhauser, D. S. 1995. Optical Physics. 3rd ed. London: Cambridge U.P. 248. ISBN 0-521-06926-2.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.