Comparison of Thermoelectric Generator (TEG) Performance Parameter Between Modelling and Simulation Results and Manufacturer Datasheet For HZ-20 & HZ-14

Authors

  • Zamir Noor Abd Hamid Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norhaliza Abdul Wahab Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. Sultan M Ali Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • R. A. Rahim Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. Amri Yunos Control and Mechatronics Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4259

Keywords:

Thermoelectric module, thermoelectric generator, finite element method (FEM), circuit equivalent model

Abstract

Currently, bio-medical and automotive industries use thermoelectric module to reproduce electrical energy from wasted heat energy. Thermoelectric generator (TEG) modeling and simulation will be hashed out further in this  paper to achieve improvement. Finite element method (FEM) model, circuit equivalent model and mathematical/computer model are various methods employed to model the thermo-electric generator. Analysis of FEM modeling requires a high tier of knowledge of an engineer in material engineering. The circuit equivalent model uses the electrical circuit analogy to describe heat transfer and electrical behavior in TEG. In this work, the mathematical derivation of circuit equivalent model is used in computer models by using Simulink (Matlab). The result of the computer model can be an alternative model for electrical or electronics engineers to improve TEG performance in the future. 

References

P. Dziurdzia. 2010. Modeling and Simulation of Thermoelectric Energy Harvesting Processes.

T. Seetawan, U. Seetawan, a. Ratchasin, S. Srichai, K. Singsoog, W. Namhongsa, C. Ruttanapun, and S. Siridejachai. 2012. Analysis of Thermoelectric Generator by Finite Element Method. Procedia Eng. 32: 1006–1011.

H.-L. Tsai and J.-M. Lin. 2009. Model Building and Simulation of Thermoelectric Module Using Matlab/Simulink. J. Electron. Mater. 39(9): 2105–2111.

S. Lineykin and S. Ben-Yaakov. 2007. Modeling and Analysis of Thermoelectric Modules. IEEE Trans. Ind. Appl. 43(2): 505–512.

G. Snyder. 2008. Small Thermoelectric Generators. The Electromechanical Society Interface. 2: 54–56.

A. Montecucco and A. R. Knox. 2014. Accurate Simulation of Thermoelectric Power Generating Systems. Appl. Energy. 118:166–172.

Nlshio, S. 2003. Thermoelectric Generator Utilizing Boiling-Condensation (Experiment and Modeling).

Note, A. 2008. Control Integrated Power System (CIPOSTM ). 1–13 Sept.

Olsen, M. L., Warren, E. L., Parilla, P. a., Toberer, E. S., Kennedy, C. E., Snyder, G. J., Ginley, D. S. 2013. A High-temperature, High-efficiency Solar Thermoelectric Generator Prototype. Energy Procedia. 49: 1460–1469. doi:10.1016/j.egypro.2014.03.155.

Downloads

Published

2015-03-18

How to Cite

Comparison of Thermoelectric Generator (TEG) Performance Parameter Between Modelling and Simulation Results and Manufacturer Datasheet For HZ-20 & HZ-14. (2015). Jurnal Teknologi (Sciences & Engineering), 73(3). https://doi.org/10.11113/jt.v73.4259