Steel Slag as A Road Construction Material

Authors

  • Mohd. Rosli Hainin Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Md. Maniruzzaman A. Aziz Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Zulfiqar Ali Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Ramadhansyah Putra Jaya Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Moetaz M. El-Sergany e-School of Health and Environmental Studies, Hamdan Bin Mohamed Electronic University, UAE
  • Haryati Yaacob Department of Geotechnics and Transportation, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4282

Keywords:

Steel slag, recycle, skid resistance, soil stabilization, industrial waste material, sustainability

Abstract

Steel slag is a byproduct obtained from steel industry. It is generated as a residue during the production of steel. Because of the high disposal cost as a waste material and the overall positive features of steel slag, it has been declared a useful construction material, not an industrial waste by most of the developed countries. Successively, it is recycled as an aggregate for the construction of roads, soil stabilization, and base and for the surfacing of flexible pavement.  Despite this, a large amount of steel slag generated from steel industries is disposed of in stockpiles to date. As a result, a large area of land is being sacrificed for the disposal of this useful resource. Many researchers have investigated the use of steel slag as an aggregate in the design of asphalt concrete for the road construction. The best management option for this by product is its recycling. This leads to reduction of landfills reserved for its disposal, saving the natural resources and attaining a potential environment. The purpose of this paper is to review the engineering properties of steel slag and its utilization for road construction in different ways.    

References

Cross, S. A., Adu-Osei, A., Hainin, M. R., Fredrichs, R. K. 1999. Effects of Gradation on Performance of Asphalt Mixtures. In 78th Annual Meeting of the Transportation Research Board, Washington, DC, USA.

Geiseler, J. 1996. Use of Steelworks Slag in Europe. Waste Management. 16(1):59–63.

Holliday, K. 1997. Steel Slag: The High Performance Industrial Aggregate. Proceedings of the 13th World Meeting of the International Road Federation. Toronto, Ontario.

Emery, J. 1984. Steel Slag Utilization in Asphalt Mixes. National Slag Association. 186–1.

Motz, H., Geiseler, J. 2001. Products of Steel Slags an Opportunity to Save Natural Resources. Waste Management. 21(3): 285–293.

Kandhal, P. S., Hoffman, G. L. 1997. Evaluation of Steel Slag Fine Aggregate In Hot-Mix Asphalt Mixtures. Journal of the Transportation Research Board. 1583(1): 28–36.

Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., Zak, M. A. 2000. Physical and Chemical Characteristics of Blast Furnace, Basic Oxygen Furnace, and Electric Arc Furnace Steel Industry Slags. Environmental Science & Technology. 34(8): 1576–1582.

Shi, C. 2004. Steel Slag-Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering. 16(3): 230–236.

Ling, T., Nor, H., Hainin, M. R. 2009. Properties of Concrete Paving Blocks Incorporating Crumb Rubber and SBR Latex. Road Mater Pave Des. 10(1): 213–222.

Alexandre, J., Beisser, R., Geiseler, J., Kuhn, M., Motz, H., Juckes, L. M., Piret, J. 1993. Utilization Of BOF Slag In Europe Meets High Standards. 1st European Oxygen Steelmaking Congress. 168–171.

Shen, D.-H., Wu, C.-M., Du, J.-C. 2009. Laboratory Investigation of Basic Oxygen Furnace Slag for Substitution of Aggregate in Porous Asphalt Mixture. Construction and Building Materials. 23(1): 453–461.

Mahieux, P.-Y., Aubert, J.-E., Escadeillas, G. 2009. Utilization of Weathered Basic Oxygen Furnace Slag in the Production of Hydraulic Road Binders. Construction and Building Materials. 23(2): 742–747.

Miklos, P. 2000. The Utilization of Electric Arc Furnace Slags In Denmark. Proceedings of 2nd European Slag Conference. Düsseldorf.

Chaurand, P., Rose, J., Briois, V., Olivi, L., Hazemann, J. L., Proux, O., Bottero, J. Y. 2007. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. Journal of Hazardous Materials. 139(3): 537–542.

Das, B., Prakash, S., Reddy, P. S. R., Misra, V. N. 2007. An Overview of Utilization of Slag and Sludge from Steel Industries. Resources, Conservation And Recycling. 50(1): 40–57.

Nicolae, M., Vîlciu, I., Zăman, F. 2007. X-ray Diffraction Analysis of Steel Slag and Blast Furnace Slag Viewing Their Use for Road Construction. UPB Scientific Bulletin Series B. 69(2): 99–108.

Tossavainen, M., Engstrom, F., Yang, Q., Menad, N., Larsson, M.L., Bjorkman, B. 2007. Characteristics of Steel Slag under Different Cooling Conditions. Waste Management. 27(10): 1335–1344.

Lekakh, S. N., Rawlins, C. H., Robertson, D. G. C., Richards, V.L., Peaslee, K.D. 2008. Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag. Metallurgical and Materials Transactions B. 39(1): 25–134.

Poh, H., Ghataora, G. S., Ghazireh, N. Soil Stabilization Using Basic Oxygen Steel Slag Fines. Journal of Materials in Civil Engineering. 18(2): 229–240.

Tsakiridis, P. E., Papadimitriou, G.D., Tsivilis, S., Koroneos, C. 2008. Utilization of Steel Slag for Portland Cement Clinker Production. Journal of Hazardous Materials. 152(2): 805–811.

Xue, Y., Wu, S., Hou, H., Zha, J. 2006. Experimental Investigation of Basic Oxygen Furnace Slag Used As Aggregate in Asphalt Mixture. Journal of Hazardous Materials. 138(2):261 268.

Barra, M., Ramonich, E., Munoz. M. 2001. Stabilization of Soils with Steel Slag and Cement for Application in Rural and Low Traffic Roads. In Beneficial Use of Recycled Materials in Transportation Applications.

Manso, J. M., Polanco, J. A., Losañez, M., González, J. J. 2006. Durability of Concrete made with EAF Slag as Aggregate. Cement and Concrete Composites. 28(6): 528–534.

Reddy, A. S., Pradhan, R., Chandra, S. 2006. Utilization of Basic Oxygen Furnace (BOF) Slag in the Production of a Hydraulic Cement Binder. International Journal of Mineral Processing. 79(2): 98–105.

Luxán, M.P., Sotolongo, R., Dorrego, F., Herrero, E. 2000. Characteristics Of The Slags Produced In The Fusion Of Scrap Steel By Electric Arc Furnace. Cement and Concrete Research. 30(4): 517–519.

Alizadeh, R., Chini, M., Ghods, P., Hoseini, M., Montazer, S., Shekarchi, M. 2003. Utilization of Electric Arc Furnace Slag as Aggregates in Concrete-Environmental Issue. Proceedings of the 6th CANMET/ACI international conference on recent advances in concrete technology. Bucharest, Romania. 451–464.

Aiban, S. A. 2006. Utilization of Steel Slag Aggregate for Road Bases. Journal of Testing and Evaluation. 34(1): 65–76.

Noureldin, A. S., McDaniel, R. S. 1990. Evaluation of Surface Mixtures of Steel Slag and Asphalt. Transportation Research Record. 1269: 133–149.

Pasetto, M., Baldo, N. 2012. Performance Comparative Analysis of Stone Mastic Asphalts with Electric Arc Furnace Steel Slag: A Laboratory Evaluation. Materials and Structures. 45(3):411–424.

Sofilić, T., Merle, V., Rastovćan-MioÄ, A., Ćosić, M. and Sofilić, U. 2010. Steel Slag Instead Natural Aggregate in Asphalt Mixture. Archives of Metallurgy and Materials.55: 657–668.

Cooley Jr, L. A., Prowell, B. D., Hainin, M. R. 2003. Comparison of the Saturated Surface-Dry and Vacuum Sealing Methods for Determining the Bulk Specific Gravity of Compacted HMA (With Discussion and Closure). Journal of the Association of Asphalt Paving Technologists. 72: 56–96.

Rohde, L., Peres Náñez, W., Augusto Pereira Ceratti, J. 2003. Electric Arc Furnace Steel Slag: Base Material for Low-Volume Roads. Journal of the Transportation Research Board. 1819(1): 201–207.

Emery, J. 1982. Slag Utilization in Pavement Construction. Extending Aggregate Resources. 95–118.

Khan, Z.A., Malkawi, R.H., Al-Ofi, K.A., Khan, N. 2002. Review of Steel Slag Utilization in Saudi Arabia. 6th Saudi Engineering Conference. KFUPM, Dhahran, Saudi Arabia.

Oluwasola, E. A., Hainin, M. R., Aziz, M. M. A., Yeacob, H., Chang, F-L. 2013. Potentials of Steel Slag and Copper Mine Tailings as Construction Materials: A review. 1st International Conference on the Science and Engineering materials (ICOSEM)

Oluwasola, E. A., Hainin, M. R., Aziz, M. M. A. 2015. Evaluation of Asphalt Mixtures Incorporating Electric Arc Furnace Steel Slag and Copper Mine Tailings for Road Construction. Transportation Geotechnics. 2: 47–55.

Oluwasola, E.A., Hainin, M.R., Aziz, M.M.A., Yaacob, H., Warid, M.N.M. 2014. Potentials of Steel Slag and Copper Mine Tailings as Construction Materials. Materials Research Innovations. 18(S6): S6–250.

Oluwasola, E. A., Hainin, M. R., Aziz, M. M. A. 2014. Characteristics and Utilization of Steel Slag in Road Construction. Jurnal Teknologi. 70(7): 117–123.

Ling, T. C., M Nor, H., Hainin, M. R., Lim, S. K. 2010. Long-term strength of rubberised concrete paving blocks. Construction Materials. 163(1): 19–26.

Stock, A., Ibberson, C.M., Taylor, I. 1996. Skidding Characteristics of Pavement Surfaces Incorporating Steel Slag Aggregates. Journal of the Transportation Research Board. 1545(1): 35–40.

Jones, N. 2000. The Successful Use of Electric Arc Furnace Slag in Asphalt. Proceedings 2nd European Slag Conference. Euroslag.

Martin, J., Cooley Jr, L. A., Hainin, M. R. 2003. Production and Construction Issues for Moisture Sensitivity of Hot-Mix Asphalt Pavements. Transportation Research Board National Seminar. San Diego, California. 209–222.

Yusoff, N. I. M., Jakarni, F. M., Nguyen, V. H., Hainin, M. R., Airey, G. D. 2013. Modelling the Rheological Properties of Bituminous Binders Using Mathematical Equations. Construction and Building Materials. 40: 174–188.

Ahmad, J., Yusoff, N. I. M., Hainin, M. R., Rahman, M. Y. A., Hossain, M. 2014. Investigation into Hot-Mix Asphalt Moisture-Induced Damage Under Tropical Climatic Conditions. Construction and Building Materials. 50:567–576.

Abdullah, M. E., Zamhari, K. A., Shamshudin, M. K., Hainin, M. R., Idham, M. K. 2013. Rheological Properties Of Asphalt Binder Modified With Chemical Warm Asphalt Additive. Advanced Materials Research. 671: 1692–1699.

Idham, M. K., Hainin, M. R., Yaacob, H., Warid, M., Naqiuddin, M., Abdullah, M.E. 2013. Effect of Aging on Resilient Modulus of Hot Mix Asphalt Mixtures. Advanced Materials Research. 723: 291–297.

Pamukcu, S., Tuncan, A. 1993. Laboratory Characterization Of Cement-Stabilized Iron-Rich Slag For Reuse in Transportation Facilities. Transportation Research Record. 1424.

Mymrin, V. A., Ponte, H. A., Ponte, M. J. J. S., Maul, A. M. 2005. Structure Formation of Slag-Soil Construction Materials. Materials and Structures. 38(1): 107–113.

Downloads

Published

2015-03-30

How to Cite

Steel Slag as A Road Construction Material. (2015). Jurnal Teknologi, 73(4). https://doi.org/10.11113/jt.v73.4282