ULTRASONICATED JATROPHA CURCAS SEED RESIDUAL AS POTENTIAL BIOFUEL FEEDSTOCK

Authors

  • M. Shahrir M. Zahari Center of Fundamental and Liberal Education, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
  • S. B. Ismail Center of Fundamental and Liberal Education, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
  • Mohd Zamri Ibrahim Center of Fundamental and Liberal Education, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
  • Su Shiung Lam Center of Fundamental and Liberal Education, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
  • Ramli Mat Center of Fundamental and Liberal Education, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.4340

Keywords:

Biodiesel, bioethanol, cavitation, reactive extraction, ultrasonic

Abstract

This study focuses on the prospect of Jatropha Curcas seed residual from the ultrasonic in-situ process which is used as a biofuel raw material especially for producing bioethanol. Reactive extraction process coupled with ultrasonic system were used for simultaneous oil extraction and transesterification of Jatropha Curcas seed. Using ethanol as the solvent, alkaline catalyst (sodium hydroxide) and with the aid of ultrasonic device, about 50% oil from the initial seeds was extracted, which is equivalent to Soxhlet extraction performance. The seeds were being chemically and physically characterized with ultimate analyses, with SEM and XRD as potential bioethanol raw material. SEM and XRD profile exhibited loosen compounds in the ultrasonicated residues and provided a better accessible and easier degradable fiber for assisting bioethanol production process compared to the initial seeds. The positive effects of the ultrasonic reactive extraction for Jatropha Curcas seed pre-treatment is beneficial towards bioethanol production and could further be used as a solvent in the latter process.

References

C. Martín, A. Moure, G. Martín, E. Carrillo, H. Domínguez, and J. C. Parajó. 2010. Fractional Characterisation of Jatropha, Neem, Moringa, Trisperma, Castor and Candlenut Seeds as Potential Feedstocks for Biodiesel Production In Cuba. Biomass and Bioenergy. 34: 533-538.

R. Chandra, V. K. Vijay, P. M. V. Subbarao, T. K. Khura. 2012. Production of Methane from Anaerobic Digestion of Jatropha and Pongamia Oil Cakes. Applied Energy. 93: 148-159.

Y. Liang, T. Siddaramu, J. Yesuf, N. Sarkany. 2010. Fermentable Sugar Release from Jatropha Seed Cakes Following Lime Pretreatment and Enzymatic Hydrolysis. Bioresource technology. 101: 6417-6424.

C. Geddes, J. Peterson, C. Roslander, G. Zacchi, M. Mullinnix, K. Shanmugam, L. Ingram. 2010. Optimizing the Saccharification of Sugar Cane Bagasse Using Dilute Phosphoric Acid Followed by Fungal Cellulases. Bioresource Technology. 101: 1851-1857.

M. Balat. 2011. Production of Bioethanol from Lignocellulosic Materials via the Biochemical Pathway: A Review. Energy Conversion and Management. 52: 858-875.

P. Alvira, E. Tomás-Pejó, M. Ballesteros, M. Negro. 2010. Pretreatment Technologies for an Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review. Bioresource Technology. 101: 4851-4861.

S. Kaul, J. Porwal, M. Garg. 2010. Parametric Study of Jatropha Seeds for Biodiesel Production by Reactive Extraction. Journal of the American Oil Chemists' Society. 87: 903-908.

S. H. Shuit, K. T. Lee, A. H. Kamaruddin, S. Yusup. 2010. Reactive Extraction and In Situ Esterification of Jatropha Curcas L. Seeds for the Production of Biodiesel. Fuel. 89: 527-530.

E. Su, P. You, D. Wei. 2009. In situ Lipase-Catalyzed Reactive Extraction of Oilseeds with Short-chained Dialkyl Carbonates for Biodiesel Production. Bioresource Technology. 100: 5813-5817.

F. H. Kasim, A. P. Harvey. 2011. Influence of Various Parameters on Reactive Extraction of Jatropha curcas L. for biodiesel production. Chemical Engineering Journal. 171 (3): 1373-1378.

S. H. Shuit, K. T. Lee, A. H. Kamaruddin, S. Yusup 2010. Reactive Extraction of Jatropha curcas L. Seed for Production of Biodiesel: Process Optimization Study. Environmental Science & Technology. 44: 4361-4367.

S. Shuit, K. Lee, A. Kamaruddin. 2010. Reactive Extraction for Production of Biodiesel from Jatropha Curcas L. Seed using Ethanol as Alcohol Source. Third International Symposium on Energy from Biomass and Waste, Proceeding Venice 2010. Venice, Italy. 8-11 November 2010.

M. S. M. Zahari, S. Ismail, M. Z. Ibrahim, S. S. Lam, R. Mat. 2015. Study of Enhanced Reactive Extraction Process Using Ultrasonication for Jatropha curcas Seed. Applied Mechanics and Materials. 699: 522-527.

G. Hincapié, F. Mondragón, D. López. 2011. Conventional and In Situ Transesterification of Castor Seed Oil for Biodiesel Production. Fuel. 90: 1618-1623.

C. S. Madankar, S. Pradhan, S. N. Naik. 2013. Parametric Study of Reactive Extraction of Castor Seed (Ricinus Communis L.) For Methyl Ester Production and Its Potential Use As Bio Lubricant. Industrial Crops and Products. 43: 283-290.

S. Pradhan, C. S. Madankar, P. Mohanty, S. N. Naik. 2012. Optimization of Reactive Extraction of Castor Seed to Produce Biodiesel Using Response Surface Methodology. Fuel. 97: 848-855.

K. G. Georgogianni, M. G. Kontominas, P. J. Pomonis, D. Avlonitis, V. Gergis. 2008. Conventional and In Situ Transesterification of Sunflower Seed Oil for the Production of Biodiesel. Fuel Processing Technology. 89: 503-509.

J. Qian, F. Wang, S. Liu, Z. Yun. 2008. In Situ Alkaline Transesterification of Cottonseed Oil for Production of Biodiesel and Nontoxic Cottonseed Meal. Bioresource Technology. 99: 9009-9012.

M. Haas, K. Scott, W. Marmer, T. Foglia. 2004. In Situ Alkaline Transesterification: An Effective Method for the Production of Fatty Acid Esters From Vegetable Oils. Journal of the American Oil Chemists' Society. 81: 83-89.

A. B. Koc, M. Abdullah, M. Fereidouni. 2011. Soybeans Processing for Biodiesel Production. InTech. Available from: http://www.intechopen.com/books/soybean-applications-and-technology/soybeansprocessing-for-biodiesel-production.

S. A. Abo El-Enin, N. K. Attia, N. N. El-Ibiari, G. I. El-Diwani, K. M. El-Khatib. 2013. In-situ Transesterification of Rapeseed and Cost Indicators for Biodiesel Production. Renewable and Sustainable Energy Reviews. 18: 471-477.

M. J. Haas, A. J. McAloon, W. C. Yee, T. A. Foglia. 2006. A Process Model to Estimate Biodiesel Production Costs. Bioresource Technology. 97: 671-678.

M. S. M. Zahari, M. Z. Ibrahim, S. S. Lam, R. Mat. 2014. Prospect of Parallel Biodiesel and Bioethanol Production from Jatrophacurcas Seed. Applied Mechanics and Materials. 663: 44-48.

A. L. Bychkov, E. I. Ryabchikova, K. G. Korolev, O. I. Lomovsky. 2012. Ultrastructural Changes of Cell Walls Under Intense Mechanical Treatment of Selective Plant Raw Material. Biomass and Bioenergy. 47: 260-267.

V. Yachmenev, B. Condon, T. Klasson, A. Lambert. 2009. Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound. Journal of Biobased Materials and Bioenergy. 3: 25-31.

G. Kumar, B. Sen, C.-Y. Lin. 2013. Pretreatment and Hydrolysis Methods for Recovery of Fermentable Sugars from De-Oiled Jatropha Waste. Bioresource Technology. 145: 275-279.

K. Georgogianni, M. Kontominas, P. Pomonis, D. Avlonitis, V. Gergis. 2008. Conventional and In Situ Transesterification of Sunflower Seed Oil for the Production of Biodiesel. Fuel Processing Technology. 89: 503-509.

S. Pilli, P. Bhunia, S. Yan, R. LeBlanc, R. Tyagi, R. Surampalli. 2011. Ultrasonic Pretreatment of Sludge: A Review. Ultrasonics sonochemistry. 18: 1-18.

C. Braguglia, A. Gianico, G. Mininni. 2011. Laboratory-scale Ultrasound Pre-treated Digestion of Sludge: Heat and Energy Balance. Bioresource technology. 102: 7567-7573.

D. K. Garnayak, R. C. Pradhan, S. N. Naik, N. Bhatnagar. 2008. Moisture-dependent Physical Properties of Jatropha Seed (Jatropha curcas L.). Industrial Crops and Products. 27: 123-129.

C. Manginot, J. L. Roustan, J. M. Sablayrolles. 1998. Nitrogen Demand of Different Yeast Strains During Alcoholic Fermentation. Importance of the Stationary Phase. Enzyme and Microbial Technology. 23: 511-517.

H. Rughoonundun, R. Mohee, M. T. Holtzapple. 2012. Influence of Carbon-to-Nitrogen Ratio on the Mixed-acid Fermentation of Wastewater Sludge and Pretreated Bagasse. Bioresource Technology. 112: 91-97.

M. Ã. Martín, I. González, A. Serrano, J. Ã. Siles. 2015. Evaluation of the Improvement of Sonication Pre-Treatment in the Anaerobic Digestion of Sewage Sludge. Journal of Environmental Management. 147: 330-337.

J. Ke, D. D. Laskar, M. T. Ellison, R. S. Zemetra, S. Chen. 2012. Modulation of Lignin Deposition/Composition via Phytic Acid Reduction in Seed Improves the Quality of Barley Straw for Sugar Release and Ethanol Production. Biomass and Bioenergy. 46: 584-592.

Downloads

Published

2015-10-21

Issue

Section

Science and Engineering

How to Cite

ULTRASONICATED JATROPHA CURCAS SEED RESIDUAL AS POTENTIAL BIOFUEL FEEDSTOCK. (2015). Jurnal Teknologi, 77(1). https://doi.org/10.11113/jt.v77.4340