A Review: Tomography Systems in Medical and Industrial Processes

Authors

  • Noor Amizan Abd. Rahman Institut Latihan Perindustrian Bukit katil, Hang Tuah Jaya, 75450 Melaka, Malaysia
  • Ling En Hong Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ruzairi Hj. Abdul Rahim Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Herlina Abdul Rahim Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nasarudin Ahmad Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Salinda Bunyamin Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Khairul Hamimah Abas Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Muzakkir Nor Ayob Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Fazlul Rahman Mohd Yunos Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Saiful Badri Mansor Protom-i Research Group, Infocomm Research Alliance, Control and Mechatronic Engineering Department, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4398

Keywords:

Tomography concept, operation, application medical and industrial sector

Abstract

Conventional methods previously guided reading meter to monitor the process and steps must be taken to interpret the readings and what need to adjustment be implemented. With the use of the method tomography, imaging process that displays the contents of the flow in the pipe or vessel during the process of giving analysts in real time quickly. By so corrective action can be done at a fast rate. The image will be formed from the trajectory of the object or sensor plane passing through the tomographic system. Use tomography method can be adapted to the process or the materials to be monitored. This paper examines the use of tomography in medical and industrial sectors. For use in the medical field such as looking at the structure of tissue in the body, can be used to detect cancerous elements tomography method comprising the X-ray, optical coherence tomography (OCT), Positron Emission Tomography (PET), Magnetic Resonance Imaging (MRI), and ultrasound. The industrial sector consists of Optical Coherence Tomography (OCT), Electrical Impedance Tomography (EIT), Electrical Resistance Tomography (ERT), optical Capacitance Tomography (ECT), and Tomography Ultrasonic (UT). This paper discusses the role, the use of concepts, basic design and development impact of the results of research conducted by previous researchers.

References

http://www.Merriam-Webster,webster. Com/dictionary/ computed+tomography © 2014, 5 September 2014.

M. Soleimani, W. R. B. Lionheart. 2005. Nonlinear Image Reconstruction in Electrical Capacitance Tomography Using Experimental Data. Meas. Sci. Technol. 16: 1987–1996.

J. Ellis. 2014. Difference Between an Ultrasound and a CT Scan. Edited By: Bronwyn Harris. Copyright Protected: 2003–2014 Conjecture Corporation.

Juliza Jamaludin, Mohd Z. Z., Ruzairi A. R., Fazlul, R. M. Y., Nor M. N. A., Muhammad, Suzzana R. A., Naizatul, S. F., Zulkarnay, Z., Mohd. H. F. R. 2003. A Review of Tomography System. Jurnal Teknologi. Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia. 64(5): 47–51.

Tubiana M. 2008. Comment on Computed Tomography and Radiation Exposure. N. Engl. J. Med. 358(8): 852.

R. A William and M. S Beck. 1995. Process Tomography: Principle, Technique and Applications. Butterworth-Heinemann Ltd.

Srinivasan S., Pogue B.W., Gibson A. 2009. Numerical Modelling and Image Construction in Diffuse Optical Tomography. Phil. Trans. R. Soc. A. 367: 3073–3093.

Novelline Robert. 1997. Squire's Fundamentals of Radiology. 5th edition. Harvard University Press.

Bushberg. 2002. The Essential Physics of Medical Imaging. 2nd ed. Lippincott Williams & Wilkins.

John, G. Stears, Joel, P. Felmlee, and Joel, E. Gray. 1986. Half-Value-Layer Increase Owing to Tungsten Buildup in the X-ray Tube in Fact or Fiction, Radiology. 160(3): 837–838.

Emilio, Burattini, Antonella Ballerna. 1944. Biomedical Applications of Synchrotron Radiation. In Proceedings of The 128th Course at the International School of Physics.

Haberfeld H. 2009. Austria-Codex Vienna in Osterreichischer Apothekerverlag.

http://www.medicalradiation.com/types-of-medical-imaging/imaging-using-x-rays/radiography-plain-x-rays/citation on 25/11/2014.

Karnegis, J. N, Heinz, J. 1979. The Risk of Diagnostic Cardiovascular Catheterization. Am Heart J. 97(3): 291–7.

Hall, E., J., Brenner, D. J. 2008. Cancer Risks from Diagnostic Radiology. Br J Radiol. 81(965): 362–78.

Srinivasan S, Pogue B.W, Gibson A. 2009. Numerical Modelling And Image Reconstruction in Diffuse Optical Tomography. Phil. Trans. R. Soc. A. 367: 3073–3093.

M. Brezinsky. 2006. Optical Coherence Tomography. Elsevier.

R. Abdul Rahim. 1996. A Tomography Imaging System for Pneumatic Conveyors Using Optical Fibers. Phd Thesis. Sheffield Hallam University.

Md Yunos, Y., Mansor, M. S. B., Nor Ayob, N. M., Fea, P. J., Abdul Rahim, R., & San, C. K. 2006. Infrared Tomography Sensor Configuration Using Four Parallel Beam Projection. Sensors and Tranducers. 10: 761–768.

Ruzairi, Leong, Chan, Mohd. 2007. Investigating Multiple Fan Beam Projection Technique Using Optical Fibre Sensor In Process Tomography. Jurnal Teknologi. 47: 61–70.

K. S. Chan. 2002. Real Time Image Reconstruction for Fan Beam Optical Tomography System, M. Eng. Thesis. Universiti Teknologi Malaysia. Skudai. Malaysia.

C. L. Goh. 2005. Real-Time Solids Mass Flow Rate Measurement via Ethernet Based Optical Tomography System. M. Eng. Thesis. Universiti Teknologi Malaysia, Skudai. Malaysia.

T. K. Chiam. 2006. Embedded System Based Solid-Gas Mass Flow Rate Meter Using Optical Tomography. M. Eng. Thesis. Universiti Teknologi Malaysia, Skudai.

Ibrahim, S. 2000. Measurement of Gas Bubbles in a Vertical Water Column Using Optical Tomography. Ph.D. Thesis. Sheffield Hallam University

R. G. Jackson. 1995. The Development of Optical Systems for Process Imaging in Process Tomography. Butterworth Heinemann

Bailey, D. L, D. W. Townsend, P. E. Valk, M. N. Maisey. 2005. Positron Emission Tomography in Basic Sciences. Secaucus, NJ: Springer-Verlag.

Phelps, M. E, Hoffman, E. J, Mullani, N. A. 1975. A Positron Emission Transaxial Tomograph For Nuclear Imaging. Radiology. 114(1): 89–98.

A. Kumar, D. Welti, R. R. Ernst. 1975. NMR Fourier Zeugmatography. J.Magn.Reson. 18: 69–83.

P. Mansfield. 1977. Multi Planar Image Formation Using NMR Spin Echos. J. Phys. C: Solid State Physics. 10: 55–58.

Hollingworth, W., Todd, C. J., Bell, M. I., Arafat, Q., Girling, S., Karia, K. R., Dixon, A. K. 2000. The Diagnostic and Therapeutic Impact of MRI in An Observational Multi Centre Study. Clin Radio. 55(11): 825–31.

Oganessian, Yu. Ts., Abdullin, F. Sh., Bailey, P. D., Benker, D. E., Bennett, M. E., Dmitriev, S. N., Ezold, J. G., Hamilton, J. H. 2010. Synthesis of a New Element with Atomic Number Z=117. Physical Review Letters Physical Review Letter. 104(14): 142502.

C. L. Dumoulin, S. P. Souza, M. F. Walker, W. Wagle. 1989. Three-Dimensional Phase Contrast Angiography. Magn. Reson. Med. 9: 139–149.

D. G. Nishimura. 1990. Time of Flight MR Angiography. Magn. Reson. Med. 14: 194–201.

Hangiandreou, N. 2003. Basic Concepts And New Technology. Radiographics. 23: 1019–1033.

Otto C. M. 2000. Principles of Echocardiographic Image Acquisition and Doppler Analysis in Textbook of Clinical Ecocardiography. 2nd ed. Philadelphia, PA: WB Saunders. 1–29.

Weyman A. E. 1994. Physical Principles of Ultrasound in Principles and Practice of Echocardiography. 2nd ed. Media, PA: Williams & Wilkins. 3–28

Kossoff, G. 2000. Basic Physics and Imaging Characteristics of Ultrasound. World J Surg. 24: 134–142.

Fowlkes, J. B., Averkiou M. 2000. Contrast And Tissue Harmonic Imaging in Goldman LW, Fowlkes JB, eds. Categorical Courses in Diagnostic Radiology Physics: CT and US Cross-Sectional Imaging. Oak Brook: Radiological Society of North America. 77–95.

MedicineNet, Inc Last Editorial Review: 11/30/2013. Citation on 7 Sept 2014©1996-2014.

Hediger Lisa. 1992. Reliability Improvement for the Advanced Computed Tomography Inspection System. Marshall Space Flight Center.

General Design Priciples by X. B. Li, S. D. Larson, A. S. Zyuzin. 2004 IEE.

Unpublished Class Notes of EE -617, Prof. L. R. Subramanyan, Department of Electrical Engineering, Indian Institute of Technology, Bombay.

Application Note AN 3. 2001. Engineering Design Rules for ECT Sensors. Process Tomography Limited, Cheshire, United Kingdom.

Quote from Encyclopedia Britannica. 2009. Dielectric, Insulating Material or A Very Poor Conductor of Electric Current. Dielectrics Physics. Britannica.

T. Dyakowski, M. Miko, D. Vlaev, R. Mann, G. W. Follows, A.Boxman and M. P. W.Wilson. 1999. Imaging Nylon Polymerisation Processes by Applying Electrical Tomography in Proc. of 1st World Congress on Industrial Process Tomography, Buxton. 383–387.

W. Q. Yang, A. Chondronasios, V. T. Nguyen, S. Nattras, M. Betting and I. Ismail. 2004. Adaptive Calibration of A Capacitance Tomography System for Imaging Water Droplet Distribution. Flow Meas. and Instrum. 15(5–6): 249–258.

S. M. Huang, A. B. Plaskowski, C. G. Xie and M. S. Beck. 1989. Tomographic Imaging of Two-Component Flow Using Capacitance Sensors. J. Phys. E: Sci. Instrum. 22: 173–177.

C. De-Yun, Z. Gui-Bin. 2004. Simulation of Sensors and Image Reconstruction Algorithm Based on Genetic Algorithms for Electrical Capacitance Tomography System. Journal of System Simulation. 16(1): 152−154.

Chen De-Yun, Yin Xiao-Yan. 2006. The Optimized Design And Simulation Of Electrical Capacitance Sensor For Electrical Capacitance Tomography System. Journal Of Electronic Measurement And Instrument. 20(1): 22–27.

Zhang Yu-Ying. 1991. Dielectric Physics. Xi’an Jiaotong University Press.

O. Isaksen, A. S. Dico and E. A. Hammer. 1994. A Capacitance Based Tomography System for Interface Measurement in Separation Vessels. Meas. Sci. Technol. 5: 1262–1271.

Process Tomography LTD. 2009. Electrical Capacitance Tomography System. Type TFLR 5000. Operating Manual Fundamentals of ECT.

M. T. Erwati, and N. Farrukh. 2009. Applications Of Electrical Impedance Tomography For Imaging In Biomedical And Material Technology. Proceedings IEEE Students Conference on Research and Development. UPM Serdang, Malaysia.

S. Kumar, S. Anand and A. Sengupta. 2010. Impedence Based Image Reconstruction of The Field Distribution Inside The Closed Phantom Using Finite Element Method. International Journal of Computer and Network Security. 2(7).

Y. Zou, Z. Guo. 2003. A Review of Electrical Impedance Techniques for Breast Cancer Detection. Elsevier Medical Engineering and Physics 25.

H. Hong, M. Rahal, A. Demosthenous and R. H. Bayford. 2007. Floating Voltage-Controlled Current Sources for Electrical Impedance Tomography in Proceedings of the 18th European Conference on Circuit Theory and Design. ECCTD 2007. 208–211.

Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Yan, W., Dong, G. 2005. A Novel Combination Method of Electrical Impedance Tomography Inverse Problem for Brain Imaging. IEEE Transactions on Magnetics. 41(5): 1848–1851.

C. W .Denyer, F. J. Lidgey WEE, Q. S. Zhu MIEEE and C. N. Mc Leod. 1993. High Output Impedance Voltage Controlled Current Source for Bio-Impedance Instrumentation. 0-7803-1377-1/93 IEEE. 1026-1027.

J. Frounchi, F. Dehkhoda and M. H. Zarifi. 2009. A Low-Distortion Wideband Integrated Current Source for Tomography Applications. European Journal of Scientific Research. EuroJournals Publishing, Inc 27(1): 56–65.

A. S. Ross, G. J. Saulnier, J. C. Newell and D. Isaacson. 2003. Current Source Design for Electrical Impedance Tomography. IOP Publishing. Physiol. Meas. 24(2): 509–516.

D. C. Barber, B. H. Brown, and J. L. Freeston. 1983. Imaging Spatial Distributions of Resistivity Using Applied Potential Tomography. Electron. Lett. 19: 933–935

International Electrotehnical Commission. 1977. Safety of Medical Electrical Equipment: Part 1: General requirements. Publ. 601-1.

B. H. Brown, 2001. Medical Impedance Tomography and Process Impedance Tomography. Measure. Sci. Technol. 12: 991–996.

A. P. Bagshaw, A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T. Tidswell, M. K. Sparkes, H. Dehghani, C. D. Binnie, D. S. Holder. 2003. Electrical Impedance Tomography of Human Brain Function Using Reconstruction Algorithms Based On The Finite Element Method. NeuroImage. 20: 752–764.

F. S. Moura, J. C. C. Aya, A. T. Fleury, M. B. P. Amato, R. G. Lima., 2010. Dynamic Imaging in Electrical Impedance Tomography of The Human Chest With Online Transition Matrix Identification. IEEE Trans. Biomed. Eng. 57(2).

F. Ferraioli, A. Formisano, R. Martone. 2009. Effective Exploitation of Prior Information in Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia Treatments. IEEE Trans. Mag. 45(3).

J. C. Newell, D. Isaacson, G. J. Saulnier, M. Cheney, and D. G. Gisser. 1993. Acute Pulmonary Edema Assessed by Electrical Impedance Tomography in Proc. Annui. Int. Conf. IEEE Engineering in Medicine and Biology Soc. 92–93.

V. Sarode, P. M. Chimurkar, A. N. Cheeran. 2012. Electrical Impedance Tomography (Eit) Based Medical Imaging Using Finite Element Method (Fem). International Journal of Engineering Sciences & Emerging Technologies. 1(2): 83–89.

An Electrical Impedance Tomography System For Current Pulse Measurements. D. Kovacic, A. Šantić Faculty Of Electrical Engineering And Computing, Unska 3, Hr-10000 Zagreb, Croatia.

S. J. Stanley, R. Mann, K. Primrose. 2005. Interrogation of A Precipitation Reaction by Electrical Resistance Tomography. AIChE Journal. 51: 607–614.

R. A. Williams, M. S. Beck. 1995. Process Tomography: Principles, Techniques and Applications. Butterworth-Heinemann Ltd. Oxford, UK.

Green, R. G., Horbury, N. M., A. Rahim, R., Dickin, F. J., Naylor, B. D. and Pridmore, T. P,. 1995. Optical Fibre Sensors For Process Tomography. Meas. Sci. Technol. Meas. Sci. Technol. 6: 1699–1704.

M. F. A. Shaib, R. A. Rahim, S. Zarina, N. Shima, M. Z. Zawahir. 2013. Comparison Between Two Different Types of Microcontroller in Developing Optical Tomography Controller Unit 64:5. Jurnal Teknologi. 13–17.

R. Abdul Rahim. 1996. A Tomography Imaging System for Pneumatic Conveyors using Optical Fibers, Phd Thesis, Sheffield Hallam University.

S. Ibrahim. 2000. Measurement of Gas Bubbles in a Vertical Water Column using Optical Tomography. Phd Thesis, Sheffield Hallam University.

Li, W., and Hoyle, B. S. 1996. Ultrasonic Process Tomography Using Multiple Active Sensors for Maximum Real Time Performance. Chemical Engineering Science. 52: 2161–2170.

R. A. Mucci,. 1984. A Comparison of Efficient Beamforming Algorithms. IEEE Trans. Acoustics, Speech, and Signal Proc. 32: 548–558.

Asher, R. C. 1983. Ultrasonic Sensors in the Chemical, and Process Industries. Journal Science Instrument Physics. 16: 959–963.

Abbaszadeh, J., Rahim, H. B. A. and Rahim, R. B. A. 2012. Optimizing The Frequency of Ultrasonic Tomography System With A Metal Pipe Conveyor. IEEE 8th International Colloquium on Signal Processing and Its Applications (CSPA). 52–57.

Bargoshadi, J. A. and Najafiaghdam, E. 2009. Ultrasonic Dispersion System Design and Optimization Using Multiple Transducers. Joint Conference of the Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) and China Symposium on Frequency Control Technology. IEEE. Washington. DC. 96.

David, J. and Cheeke, N. 2002. Fundamentals and Applications of Ultrasonic Waves. Paper presented at Physics Department Concordia University Montreal, Quebec, Canada.

Ensminger. D. 2012. Ultrasonics: Fundamentals, Technologies, and Applications. Third Edition. CRC Press

http://www.mrcophth.com/commonultrasoundcases/principlesof ultrasound.html, 25 November 2014, 12.40am.

Maezawa, W., Uchida, S., & Okamura, S. 1995. A Model of Simultaneous Measurement of Gas and Solid Holdup in a Bubble Column Using Ultrasonic Technique. Canadian Journal of Chemical Engineering. 73: 734–743.

Abdul Rahim. R., Fazalul Rahiman, M. H., Chan, K. S., Nawawi, S. W. 2007. Non-invasive Imaging of Liquid/Gas Flow using Ultrasonic Transmission-Mode Tomography. Sensors and Actuators A: Physical. 135(2): 337–345.

Fazalul R., M. H., Ruzairi A. R., Mohd H. F. R., and Mazidah T. 2006. Ultrasonic Transmission-Mode Tomography Imaging for Liquid/Gas Two-Phase Flow. IEEE Sensors. 6(6): 1706–1715.

Nor A., N. M., Fazalul R., M. H., Sazali Y., Ruzairi A. R. 2009. Ultrasound Processing Circuitry for UltrasonicTomography, Proceedings of the International Conference on Man-Machine Systems. Penang. Malaysia.

Abdul Wahab, Y., R. Abdul Rahim , M.H. Fazalul Rahiman, and M. A. Ahmad. 2011. Application of Transmission-mode Ultrasonic Tomography to Identify Multiphase Flow Regime. Proc. International Conference on Electrical, Control and Computer Engineering (INECCE). Pahang, Malaysia.

Steiner, G., and Podd, F. 2006. A Non-invasive and Non-intrusive Ultrasonic Transducer Array for Process Tomography. Proc. XVIII IMEKO World Congress. Rio de Janeiro, Brazil.

Lasaygues, P., J. P. Lefebvre and M. Bouvat-Merlin. 2002. High- Resolution Process in Ultrasonic Reflection Tomography. Acoustical Imaging. 24: 35–41.

Steiner, G., and D. Watzenig. 2008. A Bayesian Filtering Approach for Inclusion Detection with Ultrasound Reflection Tomography. Journal of Physics: Conference Series. 124.

Steiner, G., Frank Podd, Markus Brandner and Daniel Watzenig. 2006. Iterative Model-based Image Reconstruction for Ultrasound Process Tomography. Proceeding XVIII IMEKO World Congress. Rio de Janeiro, Brazil.

Brancheriau, L., Eric Debieu P. L., and Lefebvre, J. P. 2008. Ultrasonic Tomography of Green Wood Using a Non-parametric Imaging Algorithm With Reflected Waves. Ann. For. Sci. 65: 712

Pintavirooj C., and M. Sangworasil.,Ultrasonic Diffraction Tomography. 2008. International Journal of Applied Biomedical Engineering. 1(1): 34–40.

Pratt, R. G., and Worthington, M. H. 1988. The Application of Diffraction Tomography to Cross-hole Seismic Data. Geophysics. 53(10): 1284–1294.

Shekhar, S. 2012. Online Non Destructive Evaluation of Large Pipe Lines and Cylindrical Structures Using Guided Ultrasonic Wave Diffraction Tomography. International Journal of Engineering and Advanced Technology. 1: 480–485.

Downloads

Published

2015-04-13

How to Cite

A Review: Tomography Systems in Medical and Industrial Processes. (2015). Jurnal Teknologi, 73(6). https://doi.org/10.11113/jt.v73.4398