Progress in Ozone Sensors Performance: A Review

Authors

  • Michael David Department of Telecommunication Engineering, School of Engineering and Engineering Technology, Federal University of Technology Minna, Nigeria
  • Mohd Haniff Ibrahim Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sevia Mahdaliza Idrus Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Asrul Izam Azmi Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Hafizah Ngajikin Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tay Ching En Marcus Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Maslina Yaacob Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Rashidi Salim Lightwave Communication Research Group, Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Azian Abdul Aziz Language Academy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4402

Keywords:

Application, ozone, limitations, methodology, research directions, review

Abstract

There has been a surge in ozone gas relevance in agriculture, environment and in the industry. This has resulted in increased research activities in areas involving ozone gas generation, application, safety and sensing. In this manuscript we present reviews of selected recent works (2011–2015) on ozone gas sensors based on absorption spectroscopy. Issues addressed include sensors applications versus requirements; sensors performance versus limitations and cost of sensors. Outstanding research issues are also outlined. While the review is mainly biased towards sensing of ozone using conventional absorption spectroscopy, other methods such as photo acoustic, photo reductive, photo stimulated, metal oxides, electrochemical, chemical, solid state and resistive ozone sensors were also considered in light of their performance criteria. Generally, it was observed that new applications of ozone gas lead to new sensing research challenges. Several sensing parameters were repeatedly investigated and improved upon over the years. Some of these parameters include: selectivity, sensitivity, speed of response, cost of sensor, lower detection limit and portability.

References

Cole, J., S. Su, R. Blakeley, P. Koonath, and A. Hecht. 2015. Radiolytic Yield of Ozone in Air for Low Dose Neutron and X-Ray/Gamma-Ray Radiation. Radiation Physics and Chemistry. 106: 95–98.

Kumharn, W. and S. Sudhibrabha. 2014. Study of Ozone and Sulfur Dioxide Using Thailand Based Brewer Spectrophotometers. Advances in Space Research. 53: 802–809.

Li, Y. L. 2014. Experimental Investigation on Ozone Mass Transfer Coefficient Enhanced by Electric Field in Liquid Phase. Advanced Materials Researc. 864: 2139–2144.

Costagliola, M. A., F. Murena, and M. V. Prati. 2014. Exhaust Emissions of Volatile Organic Compounds of Powered Two-wheelers: Effect of Cold Start and Vehicle Speed. Contribution To Greenhouse Effect And Tropospheric Ozone Formation. Science of The Total Environmen. 468: 1043–1049.

Lefohn, A. S., C. Emery, D. Shadwick, H. Wernli, J. Jung, and S. J. Oltmans. 2014. Estimates of Background Surface Ozone Concentrations in the United States Based on Model-derived Source Apportionment. Atmospheric Environment. 84: 275–288.

Garcia, G., A. G. Allen, and A. A. Cardoso. 2014. A New and Simple Visual Technique Based on Indigo Dye for Determination of Ozone in Ambient Air. Water, Air, & Soil Pollution. 225: 1–9.

Facta, M., Z. Salam, and Z. Buntat. 2014. A New Type of Planar Chamber for High Frequency Ozone Generator System. Advanced Materials Research. 896: 726–729.

Hadji K., F. Pontiga, A. Belasri, S. Hadj-Ziane, and A. Fernández-Rueda. 2014. Experimental Study of Ozone Generation by Negative Corona Discharge in Mixtures of N2 and O2. Ozone: Science & Engineering. 36: 65–72.

Russell, C. M., M. G. Marshall, C. L. Foster, and D. H. Rowles. 2014. Ozone-Based Disinfecting Device Comprising a Flow Sensor. ed: US Patent. 20,140,154,141.

Roetke, R J. J. 2014. Method For Regulating Ozone within a Washing Machine Appliance. ed: US Patent 20,140,325,766.

Quiñones, D. H., P. M. Ãlvarez, A. Rey, S. Contreras, and F. J. Beltrán. 2015. Application of Solar Photocatalytic Ozonation for the Degradation of Emerging Contaminants in Water in a Pilot Plant. Chemical Engineering Journal. 260: 399–410.

Lu, N., X.-F. Wu, J.-Z. Zhou, X. Huang, and G.-J. Ding. 2014. Bromate Oxidized from Bromide During Sonolytic Ozonation. Ultrasonics Sonochemistry.

Guo, W.-Q., R.-L. Yin, X.-J. Zhou, J.-S. Du, H.-O. Cao, S.-S. Yang, and N.-Q. Ren. 2015. Sulfamethoxazole Degradation by Ultrasound/Ozone Oxidation Process in Water: Kinetics, Mechanisms, and Pathways. Ultrasonics Sonochemistry. 22: 182–187.

Raja, M. 2015. Surface Modification of Carbon Nanotubes with Combined UV and Ozone Treatments. Fullerenes, Nanotubes and Carbon Nanostructures. 23: 11–16.

Penru, Y., A. R. Guastalli, S. Esplugas, and S. Baig. 2013. Disinfection of Seawater: Application of UV and Ozone. Ozone: Science & Engineering. 35: 63–70.

Han, Y., T. Liang, X.-j. Yang, X.-l. Ren, and Y.-f. Yin. 2010. Research on Optical Air Chamber of Infrared Gas Sensor. Pervasive Computing Signal Processing and Applications (PCSPA), 2010 First International Conference on. 2010: 33–36.

Kalnajs, L. E. and L. M. Avallone. 2010. A Novel Lightweight Low-Power Dual-Beam Ozone Photometer Utilizing Solid-State Optoelectronics. Journal of Atmospheric and Oceanic Technology. 27: 869–880.

Muz, M., M. Ak, O. Komesli, and C. Gökçay. 2012. An Ozone Assisted Process for Treatment of EDC’s in Biological Sludge. Chemical Engineering Journal.

Antoniou, M. G. G., Hey, S. Rodríguez Vega, A. Spiliotopoulou, J. Fick, M. Tysklind, J. C. Jansen and H. R. Andersenl.2013. Required Ozone Doses for Removing Pharmaceuticals from Wastewater Effluents. Science of the Total Environmen. 456: 42–49.

Jian, F., D. S. Jayas, and N. D. White. 2013. Can Ozone be a New Control Strategy for Pests of Stored Grain? Agricultural Research. 1–8.

Horvitz, S. and M. Cantalejo. 2012. Application of Ozone for the Postharvest Treatment of Fruits and Vegetables. Critical Reviews in Food Science and Nutrition.

Palou, L., C. H. Crisosto, J. L. Smilanick, J. E. Adaskaveg, and J. P. Zoffoli. 2002. Effects of Continuous 0.3 Ppm Ozone Exposure on Decay Development and Physiological Responses of Peaches and Table Grapes in Cold Storage. Postharvest Biology And Technology. 24: 39–48.

Kim J. G., A. E. Yousef and G. W. Chism. 1999. Use of Ozone to Inactivate Microorganisms on Lettuce. Journal of Food Safety. 19: 17–34.

Karaca, H. and Y. S. Velioglu. 2007. Ozone Applications in Fruit and Vegetable Processing. Food Reviews International. 23: 91–106.

Wu, J., J. Xu, and F. Zhu. 2013. Different Ozone Processing Conditions on Grapes Storage Quality. Informatics and Management Science I. Springer. 781–789.

Matsumoto, K., K. Sameshima, Y. Teraoka, K. Furuya, K. Murahashi, and D. Shirai. 2012. Formation of Ozone Ice by Freezing Water Containing Ozone Micro-bubbles (Investigation into the Influence of Surfactant on Characteristics of Ice Containing Oxygen Micro-Bubbles). International Journal of Refrigeration.

Mohammed, N. I., N. A. Ramli, and A. S. Yahya. 2012. Ozone Phytotoxicity Evaluation and Prediction of Crops Production in Tropical Regions. Atmospheric Environment.

Amin, N. 2014. Effect of Ozone on the Relative Yield of Rice Crop in Japan Evaluated Based on Monitored Concentrations. Water, Air, & Soil Pollution. 225: 1–9.

Ainsworth, E. A., S. P. Serbin, J. A. Skoneczka, and P. A. Townsend. 2013. Using Leaf Optical Properties to Detect Ozone Effects on Foliar Biochemistry. Photosynthesis Research. 1–12.

Fuentes, J. D., H. R. T’ai, and J. Zenker. 2013. Ozone Impedes the Ability of a Herbivore to Find Its Host. Environmental Research Letters. 8: 014048.

Weisel, C., C. J. Weschler, K. Mohan, J. Vallarino, and J. D. Spengler. 2013. Ozone and Ozone Byproducts in the Cabins of Commercial Aircraft. Environmental Science & Technology. 47: 4711–4717.

Ezcurra, A., B. Benech, A. Echelecou, J. Santamaría, I. Herrero, and E. Zulueta. 2013. Influence of Local Air Flow Regimes on the Ozone Content of Two Pyrenean Valleys. Atmospheric Environment.

Wang, Y., B. Hu, and Y. Wang. 2013. Characteristics of Ozone and Its Precursors in Northern China: A Comparative Study of Three Sites. Atmospheric Research.

Air Quality Guideline for Europe, EURO. 1998. World Health Organization, Regional Office for Europe, WHO Regional Publications, Copenhagen, European Series.

Degner, M., N. Damaschke, H. Ewald, S. O'Keeffe, and E. Lewis. 2009. UV LED-based Fiber Coupled Optical Sensor for Detection of Ozone in the Ppm and Ppb Range. In Sensors, 2009 IEEE. 2009: 95–99.

Yu, J., H. Yang, H. Mo, T. Kim, T. Jeong, C. Youn, et al.. 2013. Sensing Mechanism and Behavior of Sputtered ZnCdO Ozone Sensors Enhanced by Photons for Room-Temperature Operation. Journal of Electronic Materials. 42: 720–725.

Wang, C. Y., R. Becker, T. Passow, W. Pletschen, K. Köhler, V. Cimalla, et al. 2011. Photon Stimulated Sensor Based on Indium Oxide Nanoparticles I: Wide-Concentration-Range Ozone Monitoring in Air. Sensors and Actuators B: Chemica. 152: 235–240.

Da Silva, L. F., A. C. Catto, W. Avansi Jr, L. S. Cavalcante, J. Andres, K. Aguir, et al. 2014. A Novel Ozone Gas Sensor Based on One Dimensional (1D) α-Ag 2 WO 4 Nanostructures. Nanoscal.

Mastelaro, V. R., S. C. Zilio, L. F. Da Silva, P. I. Pelissari, M. I. B. Bernardi, J. Guerin, et al. 2013. Ozone Gas Sensor Based on Nanocrystalline SrTi1-xFe xO3 Thin Films. Sensors and Actuators, B: Chemical. 181: 919–924.

Korotcenkov, G. and B. K. Cho. 2012. Ozone Measuring: What Can Limit Application of Sno2-based Conductometric Gas Sensors? Sensors and Actuators, B: Chemical. 161: 28–44.

Ermel, M., R. Oswald, J.-C. Mayer, A. Moravek, G. Song, M. Beck, et al. 2013. Preparation Methods to Optimize the Performance of Sensor Discs for Fast Chemiluminescence Ozone Analyzers. Environmental Science & Technology. 47: 1930–1936.

Zahn, A., J. Weppner, H. Widmann, K. Schlote-Holubek, B. Burger, T. Kühner, et al. 2012 A Fast and Precise Chemiluminescence Ozone Detector for Eddy Flux and Airborne Application. Atmospheric Measurement Technique. 5: 363–375.

Eastman, J. A. and D. H. Stedman. 1977. A Fast Response Sensor for Ozone Eddy-correlation Flux Measurements. Atmospheric Environment (1967). 11: 1209–1211.

Washenfelder, R., N. Wagner, W. Dube, and S. Brown. 2011. Measurement of Atmospheric Ozone by Cavity Ring-down Spectroscopy. Environmental Science & Technology. 45: 2938–2944.

Kassi, S. and A. Campargue. 2012. Cavity Ring Down Spectroscopy With 5× 10− 13 Cm− 1 Sensitivity. The Journal of Chemical Physic. 137: 234201.

Darby, S. B., P. D. Smith, and D. S. Venables. 2012. Cavity-enhanced Absorption Using an Atomic Line Source: Application To Deep-UV measurements. Analyst. 137: 2318–2321.

Gomez, A. and E. Rosen. 2012. Fast Response Cavity Enhanced Ozone Monitor. Atmospheric Measurement Techniques Discussions. 5: 7223–7241.

Gao, R., J. Ballard, L. Watts, T. Thornberry, S. Ciciora, R. McLaughlin, et al. 2012. A Compact, Fast UV Photometer for Measurement of Ozone from Research Aircraft. Atmospheric Measurement Techniques. 5: 2201–2210.

Chien, F. S.-S., C.-R. Wang, Y.-L. Chan, H.-L. Lin, M.-H. Chen, and R.-J. Wu. 2010. Fast-response Ozone Sensor with Zno Nanorods Grown by Chemical Vapor Deposition. Sensors and Actuators, B: Chemical. 144: 120–125.

Bottger, S., M. Kohring, U. Willer, and W. Schade. 2013. Off-beam Quartz-enhanced Photoacoustic Spectroscopy with LEDs. Applied Physics B: Lasers and Optics. 113: 227–232.

Gondal, M. A., A. Dastageer, and Z. H. Yamani. 2009. Laser-induced Photoacoustic Detection of Ozone at 266 Nm Using Resonant Cells of Different Configuration. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. 44: 1457–1464.

Degner, M., H. Ewald, and E. Lewis. 2011. LED based Spectroscopy-A Low Cost Solution for High Resolution Concentration Measurements Eg for Gas Monitoring Applications. Sensing Technology (ICST), 2011 Fifth International Conference. 2011: 145–150.

Yoshinobu, A., T. Misaichi, Y. Kaoru, K. Masahito, A. Tsutomu, N. Yasushi, et al 2012. High-Sensitivity Ozone Sensing Using 280 nm Deep Ultraviolet Light-Emitting Diode for Detection of Natural Hazard Ozone. Journal of Environmental Protection.

Yu, G. W., J. Lin, and F. Qian. Measurement of Ozone in the Printing Process. Advanced Materials Research. 380: 201–204.

De Maria, L. and D. Bartalesi. 2012. Fiber-optic Multisensor System for Predischarges Detection on Electrical Equipment. IEEE Sensors Journal. 12: 207–212.

Teranishi, K., Y. Shimada, N. Shimomura, and H. Itoh. 2013. Investigation of Ozone Concentration Measurement by Visible Photo Absorption Method. Ozone: Science & Engineering. 35: 229–239.

David, M., T. C. E. Marcus, M. Yaacob, M. R. Salim, N. Hussin, M. H. Ibrahim, S. M. Idrus, N. H. Ngajikin and A.I. Azmi. 2014. Enhancement of the Response time of a Reflective Type Sensor for Ozone Measurements. Jurnal Teknologi. 69(8): 59–63.

Teranishi, K., Y. Shimada, N. Shimomura, and H. Itoh. 2010. Measurement of Ozone Concentration Based on Visible Photo-Absorption Method. Proc. 12th Int. Symp. High Pressure, Low Temperature Plasma Chem. 2010: 325–328.

Marcus, T. C. E., M. David, M. Yaacob, M. R. Salim, M. H. Ibrahim, N. H. Ngajikin, A. I. Azmi, S.M. Idrus and Z. Buntat. 2014. Interchangeable Range of Ozone Concentration Simulation for Low Cost Reconfigurable Brass Gas Cell. Jurnal Teknologi. 69(8): 13–17.

Wang, C. Y., S. Bagchi, M. Bitterling, R. W. Becker, K. Kohler, V. Cimalla, et al. 2012. Photon Stimulated Ozone Sensor Based on Indium Oxide Nanoparticles II: Ozone monitoring in humidity and water environments. Sensors and Actuators, B: Chemica. 164: 37–42.

Kohring, M., U. Willer, S. Bottger, A. Pohlkotter, and W. Schade. 2012. Fiber-coupled Ozone Sensor Based on Tuning Fork-enhanced Interferometric Photoacoustic Spectroscopy. Selected Topics in Quantum Electronic. IEEE Journal. 18: 1566–1572.

Westafer, R. S., G. Levitin, D. W. Hess, M. H. Bergin, and W. D. Hunt. 2014. Detection of ppb Ozone Using a Dispersive Surface Acoustic Wave Reflective Delay Line with Integrated Reference Signal. Sensors and Actuators, B: Chemical. 192: 406–413.

Gaddari, A., F. Berger, M. Amjoud, J. B. Sanchez, M. Lahcini, B. Rhouta, et al. 2013. A Novel Way for the Synthesis of Tin Dioxide Sol-gel Derived Thin Films: Application to O3 Detection at Ambient Temperature. Sensors and Actuators, B: Chemical. 176: 811–817.

Böttger, S., M. Köhring, U. Willer, and W. Schade. 2013. Off-beam Quartz-enhanced Photoacoustic Spectroscopy with LEDs. Applied Physics B. 113: 227–232.

Tavares, J. R., M. S. Sthel, M. V. da Rocha, G. R. Lima, M. G. Da Silva, and H. Vargas. 2014. Detection of Greenhouse Gas Precursors from Ethanol Powered Vehicles in Brazil. Biomass and Bioenergy. 61: 46–52.

Chen, M.-H., C.-S. Lu, and R.-J. Wu. 2014. Novel Pt/TiO Materials Irradiated ny Visible Light Used in a Photoreductive Ozone Sensor. Journal of the Taiwan Institute of Chemical Engineers. 45: 1043–1048.

Wu, R.-J., Y.-C. Chiu, C.-H. Wu, and Y.-J. Su. 2015. Application of Au/TiO 2–WO 3 Material in Visible Light Photoreductive Ozone Sensors. Thin Solid Films. 574: 156–161.

Contaret, T., T. Florido, J.-L. Seguin, and K. Aguir. 2011. A Physics-Based Noise Model for Metallic Oxide Gas Sensors Characterization. Procedia Engineering. 25: 375–378.

Yu, J. H., H. J. Yang, H. S. Mo, T. S. Kim, T. S. Jeong, C. J. Youn, et al. 2013. Sensing Mechanism and Behavior of Sputtered Zncdo Ozone Sensors Enhanced by Photons For Room- Temperature Operation. Journal of Electronic Material. 42: 720–725.

Jeng, C.-C., P. J. Chong, C.-C. Chiu, G.-J. Jiang, H.-J. Lin, R.-J. Wu, et al. 2014. A Dynamic Equilibrium Method for the Sno 2-Based Ozone Sensors Using UV-LED Continuous Irradiation. Sensors and Actuators B: Chemical. 195: 702–706.

Wu, C.-H., G.-J. Jiang, C.-C. Chiu, P. Chong, C.-C. Jeng, R.-J. Wu, et al. 2015. Fast Gas Concentration Sensing by Analyzing the Rate of Resistance Change. Sensors and Actuators B: Chemical. 209: 906–910.

Berger, F., B. Ghaddab, J. Sanchez, and C. Mavon. 2011. Development of an Ozone High Sensitive Sensor Working at Ambient Temperature. Journal of Physics: Conference Series. 2011: 012054.

Wang, Z., X. Qiu, R. Tang, J. Oiler, J. Zhu, H. Huang, et al.. 2011. Ozone Senosr using ZnO Based Film Bulk Acoustic Resonator. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. 2011: 1124–1127.

Ishii, Y., T. A. Ivandini, K. Murata, and Y. Einaga, 2013. Development of Electrolyte-free Ozone Sensors Using Boron-doped Diamond Electrodes. Analytical Chemistry. 85: 4284–4288.

Westafer, R. S., G. Levitin, D. W. Hess, M. H. Bergin, and W. D. Hunt. 2014. Detection of Ppb Ozone Using a Dispersive Surface Acoustic Wave Reflective Delay Line with Integrated Reference Signal. Sensors and Actuators B: Chemica. 192: 406–413.

Wagner, T., J. Hennemann, C.-D. Kohl, and M. Tiemann. 2011. Photocatalytic Ozone Sensor Based on Mesoporous Indium Oxide: Influence of the Relative Humidity on the Sensing Performance. Thin Solid Films. 520: 918–921.

Martini, V., S. Bernardini, M. Bendahan, K. Aguir, P. Perrier, and I. Graur. 2012. Microfluidic Gas Sensor With Integrated Pumping System. Sensors and Actuators B: Chemical. 170: 45–50.

Downloads

Published

2015-04-13

How to Cite

Progress in Ozone Sensors Performance: A Review. (2015). Jurnal Teknologi, 73(6). https://doi.org/10.11113/jt.v73.4402