Compatible Study on Utilizing Frequency for Non-Invasive Electrical Resistance Tomography Using COMSOL Multiphysics

Authors

  • Yasmin Abdul Wahab Department of Instrumentation & Control Engineering (ICE), Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang, 26600, Pekan, Pahang, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Mohd Hafiz Fazalul Rahiman Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Leow Pei Ling Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Suzanna Ridzuan Aw Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Fazlul Rahman Mohd Yunus Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Herlina Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Herman Wahid Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Shafishuhaza Sahlan Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Mohd Amri Md. Yunus Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Norhaliza Abdul Wahab Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia
  • Azian Abd Aziz@Ahmad Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Infocomm Research Alliance, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4408

Keywords:

Non-invasive, ERT, COMSOL, quasi-static electric field, frequency

Abstract

Non-invasive techniques are widely applied in process plants compared to other sensing techniques. Due to advantages such as preventing corrosion to the sensor and lengthening the sensor lifespan, this technique is also applied in process tomography such as in non-invasive ERT system. The purpose of this paper is to investigate the compatibility of utilizing frequency for non-invasive ERT systems. Based on quasi-static electric fields, one pair of electrodes is used to simulate the optimum frequency for the system. It was firstly derived using a mathematical equation followed by simulation using finite element model software (COMSOL Multiphysics). Results showed that by simulating several frequencies to the system, a minimum frequency that should be applied is 2 MHz to ensure that the real part of the total impedance is dominant and also to neglect the reactance part of the total impedance for the non-invasive ERT system. Thus, the non-invasive ERT system is an alternative way for the industry in monitoring the performance of process plant.

References

R. C. Asher. 1983. Ultrasonic Sensors in the Chemical and Process Industries. J. Phys. E. 6(10): 959–963.

R. Banasiak, R. Wajman, T. Jaworski, P. Fiderek, H. Fidos, J. Nowakowski, and D. Sankowski. 2014. Study on Two-phase Flow Regime Visualization and Identification Using 3D Electrical Capacitance Tomography and Fuzzy-logic Classification. Int. J. Multiph. Flow. 58: 1–14.

R. Zhang, Q. Wang, H. Wang, M. Zhang, and H. Li. 2014. Data Fusion in Dual-mode Tomography for Imaging Oil–gas Two-phase Flow. Flow Meas. Instrum. 37: 1–11.

Y. Zhao, H. Yeung, E. E. Zorgani, A. E. Archibong, and L. Lao. 2013. High Viscosity Effects on Characteristics of Oil and Gas Two-phase Flow in Horizontal Pipes. Chem. Eng. Sci. 95: 343–352.

E. J. Mohamad, R. Abdul Rahim, P. L. Leow, M. H. Fazalul Rahiman, O. M. F. Marwah, and N. M. Nor Ayob. 2012. Segmented Capacitance Tomography Electrodes : A Design and Experimental Verifications. IEEE Sens. J. 12(5): 1589–1598.

R. Yan, C. Pradeep, J. Muwanga, and S. Mylvaganam. 2012 Interface imaging in multiphase flow based on frame by frame eigenvalues of capacitance matrices from Electrical Capacitance Tomographic systems. In IEEE International Conference on Imaging Systems and Techniques. 2, pp. 466–469.

W. A. Al-Masry, E. M. Ali, S. A. Alshebeili, and F. M. Mousa. 2010. Non-invasive Imaging of Shallow Bubble Columns Using Electrical Capacitance Tomography. J. Saudi Chem. Soc. 14(3): 269–280.

J. Abbaszadeh, H. Abdul Rahim, R. Abdul Rahim, and S. Sarafi. 2014. Frequency Analysis of Ultrasonic Wave Propagation on Metal Pipe in Ultrasonic Tomography System. Sens. Rev. 34(1): 13–23.

M. H. F. Rahiman, R. A. Rahim, H. A. Rahim, E. J. Mohamad, Z. Zakaria, and S. Z. M. Muji. 2014. An Investigation on Chemical Bubble Column Using Ultrasonic Tomography for Imaging of Gas Profiles. Sensors Actuators B Chem. 202: 46–52.

F. R. Mohd Yunus, N. A. Noor Azlan, N. M. Nor Ayob, M. J. Pusppanathan, M. F. Jumaah, C. L. Goh, R. Abdul Rahim, A. Ahmad, Y. Md Yunus, and H. Abdul Rahim. 2013. Simulation Study of Bubble Detection Using Dual-Mode Electrical Resistance and Ultrasonic Transmission Tomography for Two-Phase Liquid and Gas. Sensors & Transducer. 150(3): 97–105.

M. J. Puspanathan, N. M. Nor Ayob, Fazlul Rahman Yunus, Khairul Hamimah Abas, H. Abdul Rahim, P. L. Leow, R. Abdul Rahim, F. A. Phang, M. H. Fazalul Rahiman, and Z. Zakaria. 2013. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement. Sensors & Transducer. 148(1): 33–39.

M. H. F. Rahiman, R. A. Rahim, H. A. Rahim, N. M. N. Ayob, E. J. Mohamad, and Z. Zakaria. 2013. Modelling Ultrasonic Sensor for Gas Bubble Profiles Characterization of Chemical Column. Sensors Actuators B Chem. 184: 100–105.

J. Abbaszadeh, H. Abdul Rahim, R. Abdul Rahim, S. Sarafi, M. Nor Ayob, and M. Faramarzi. 2013. Design Procedure of Ultrasonic Tomography System with Steel Pipe Conveyor. Sensors Actuators A Phys. 203: 215–224.

N. M. Nor Ayob, M. J. Pusppanathan, R. Abdul Rahim, M. H. Fazalul Rahiman, F. R. Mohd Yunus, S. Buyamin, I. M. Abd Rahim, and Y. Md. Yunos. 2013. Design Consideration for Front-End System in Ultrasonic Tomography. J. Teknol. 64(5): 53–58.

M. H. Fazalul Rahiman, R. Abdul Rahim, H. Abdul Rahim, and N. M. Nor Ayob. 2012. Novel Adjacent Criterion Method for Improving Ultrasonic Imaging Spatial Resolution. IEEE Sens. J. 12(6): 1746–1747.

Y. Murai, Y. Tasaka, Y. Nambu, Y. Takeda, and S. R. Gonzalez A. 2010. Ultrasonic Detection of Moving Interfaces in Gas–liquid Two-phase Flow. Flow Meas. Instrum. 21(3): 356–366.

N. M. Nor Ayob, M. H. Fazalul Rahiman, Z. Zakaria, S. Yaacob, R. Abdul Rahim, and M. R. Manan. 2011. Simulative study in liquid/Gas Two-Phase Flow Measurement for Dual-Plane Ultrasonic Transmission-Mode Tomography. J. Teknol. 54: 79–94.

J. Pusppanathan, R. Abdul Rahim, and M. H. Fazalul Rahiman. 2011. Ultrasonic Tomography System in Liquid-Gas Flow Monitoring. J. Teknol. 54: 255–266.

N. M. Nor Ayob, S. Yaacob, Z. Zakaria, M. H. Fazalul Rahiman, R. Abdul Rahim, and M. R. Manan. 2010. Improving Gas Component Detection of an Ultrasonic Tomography System for Monitoring Liquid/Gas Flow. In 2010 6th International Colloquium on Signal Processing & its Applications. 1(1): 1–5.

Z. Zakaria, M. H. Fazalul Rahiman, and R. Abdul Rahim. 2010. Simulation of the Two-Phase Liquid–Gas Flow through Ultrasonic Transceivers Application in Ultrasonic Tomography. Sensors & Transducer. 112(1): 24–38.

Z. Zhang, M. Bieberle, F. Barthel, L. Szalinski, and U. Hampel. 2013. Investigation of Upward Cocurrent Gas–liquid Pipe Flow Using Ultrafast X-Ray Tomography and Wire-Mesh. Flow Meas. Instrum. 32: 111–118.

S. Boden, M. Bieberle, and U. Hampel. 2008. Quantitative Measurement of Gas Hold-up Distribution in a Stirred Chemical Reactor Using X-Ray Cone-beam Computed Tomography. Chem. Eng. J. 139(2): 351–362.

T. J. Heindel, J. N. Gray, and T. C. Jensen. 2008. An X-ray System for Visualizing Fluid Flows. Flow Meas. Instrum. 19: 67–78.

C. Wu, Y. Cheng, Y. Ding, F. Wei, and Y. Jin. 2007. A novel X-ray Computed Tomography Method for Fast Measurement of Multiphase Flow. Chem. Eng. Sci. 62: 4325–4335.

H. Prasser, M. Misawa, and I. Tiseanu. 2005. Comparison between Wire-mesh Sensor and Ultra-fast X-Ray Tomograph for an Air–Water Flow in a Vertical Pipe. Flow Meas. Instrum. 16: 73–83.

J. L. Hubers, A. C. Striegel, T. J. Heindel, J. N. Gray, and T. C. Jensen. 2005. X-ray Computed Tomography in Large Bubble Columns. Chem. Eng. Sci. 60: 6124–6133.

N. S. Mohd Fadzil, R. Abdul Rahim, M. S. Karis, S. Z. Mohd Muji, M. F. Abdul Sahib, M. S. B. Mansor, N. M. Nor Ayob, M. F. Jumaah, and M. Z. Zawahir. 2013. Hardware Design of Laser Optical Tomography System for Detection of Bubbles Column. J. Teknol. 64(5): 69–73.

S. Ibrahim, M. A. M. Yunus, R. G. Green, and K. Dutton. 2012. Concentration Measurements of Bubbles in a Water Column Using an Optical Tomography System. ISA Trans. 51(6): 821–826.

E. Schleicher, M. J. Da Silva, S. Thiele, A Li, E. Wollrab, and U. Hampel. 2008. Design of an Optical Tomograph for the Investigation of Single- and Two-phase Pipe Flows. Meas. Sci. Technol. 19(9): 094006.

Y. Md. Yunos, R. Abdul Rahim, and R. G. Green. 2008. Initial Result on Measurement of Gas Volumetric Flow Rate in Gas / Liquid Mixtures using Linear CCD. J. Teknol. 48(D): 1–11.

W. Yenjaichon, J. R. Grace, C. Jim Lim, and C. P. J. Bennington. 2013. Characterisation of Gas Mixing in Water and Pulp-suspension Flow Based on Electrical Resistance Tomography. Chem. Eng. J. 214: 285–297.

M. Sobri, A. Ahmad, M. Irwan, and S. Jantan. 2013. ERT Visualization of Gas Dispersion Performance of Aerofoil and Radial Impellers in an Agitated Vessel. J. Teknol. 64(5): 75–78.

A. D. Okonkwo, M. Wang, and B. Azzopardi. 2013. Characterisation of a High Concentration Ionic Bubble Column Using Electrical Resistance Tomography. Flow Meas. Instrum. 31: 69–76.

C. Yang, H. Wang, and Z. Cui. 2012. Application of Electrical Resistance Tomography in Bubble Columns for Volume Fraction Measurement. In IEEE International Conference on Instrumentation and Measurement Technology (I2MTC 2012). 60820106002. 1199–1203.

J. Kourunen, T. Niitti, and L. M. Heikkinen. 2011. Application of Three-dimensional Electrical Resistance Tomography to Characterize Gas Holdup Distribution in Laboratory Flotation Cell. Miner. Eng. 24(15): 1677–1686.

X. Deng, G. Li, Z. Wei, Z. Yan, and W. Yang. 2011. Theoretical Study of Vertical Slug Flow Measurement by Data Fusion From Electromagnetic Flowmeter and Electrical Resistance Tomography. Flow Meas. Instrum. 22(4): 272–278.

H. Jin, S. Yang, G. He, M. Wang, and R. A. Williams, 2010. The Effect of Gas-liquid Counter-current Operation on Gas Hold-up in Bubble Columns Using Electrical Resistance Tomography. J. Chem. Technol. Biotechnol. 85(9): 1278–1283.

Y. Xu, H. Wang, Z. Cui, and F. Dong. 2009. Application of Electrical Resistance Tomography for Slug Flow Measurement in Gas-liquid Flow of Horizontal Pipe. In IEEE International Workshop on Imaging Systems and Techniques (IST 2009). 319–323.

M. Sharifi and B. Young. 2013. Electrical Resistance Tomography (ERT) applications to Chemical Engineering. Chem. Eng. Res. Des. 91(9): 1625–1645.

F. Dickin and M. Wang. 1996. Electrical Resistance Tomography for Process Applications. Meas. Sci. Technol. 7(3): 247–260.

B. Wang, Y. Hu, H. Ji, Z. Huang, and H. Li. 2013. A Novel Electrical Resistance Tomography System Based on C 4 D Technique. IEEE Trans. Instrum. Meas. 62(5): 1017–1024.

B. Wang, W. Zhang, Z. Huang, H. Ji, and H. Li. 2013. Modeling and Optimal Design of Sensor for Capacitively Coupled Electrical Resistance Tomography System. Flow Meas. Instrum. 31: 3–9.

B. Wang, Y. Hu, H. Ji, Z. Huang, and H. Li. 2012. A Novel Electrical Resistance Tomography System Based on C4D Technique. In IEEE International Conference on Instrumentation and Measurement Technology (I2MTC 2012). 1929–1932.

Z. Cao, L. Xu, C. Xu, and H. Wang. 2010. Electrical Resistance Tomography(ERT) by using an ECT Sensor. In IEEE International Conference on Imaging Systems and Techniques (IST 2010). 63–66.

J. Larsson. 2006. Electromagnetics from a Quasistatic Perspective. Am. J. Phys. 75(3): 230.

D. K. Kalluri. 2013. Principles of Electromagnetic Waves And Materials. FL. : CRC Press. 11–16.

J. William H.Hayt and John A. Buck. 2006. Energy and Potential. In Engineering Electromagnetics. 99.

F. T. Ulaby, E. Michielssen, and U. Ravaioli. 2010. Fundamentals of Applied Electromagnetics. 6th ed. Boston : Prentice Hall. 299–300.

C. Kuo-Sheng, D. Isaacson, J. C. Newell, and D. G. Gisser. 1989. Electrode Models for Electric Current Computed. IEEE Trans. Biomed. Eng. 36(9): 918–924.

M. A. Zimam, E. J. Mohamad, R. Abdul Rahim, and L. P. Leow. 2011. Sensor Modeling for Electrical Capacitance Tomography System using COMSOL Multiphysics. J. Teknol. 55(2): 33–47.

Downloads

Published

2015-04-13

How to Cite

Compatible Study on Utilizing Frequency for Non-Invasive Electrical Resistance Tomography Using COMSOL Multiphysics. (2015). Jurnal Teknologi, 73(6). https://doi.org/10.11113/jt.v73.4408