Intracellular Thermal Sensor for Single Cell Analysis -Short review

Authors

  • Salma Abdullah Binslem Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Ridzuan Ahmad Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Zubaidah Awang Language Academy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4409

Keywords:

Luminescent thermometry, non-luminescent thermometry, sensitivity, single

Abstract

Temperature is a key environmental variable that affects almost all natural and engineered systems from the system level down to the molecular level. The first attempt to measure temperature goes back to 1592 when Galileo Galilei tried to develop a thermometer. Since then having accurate temperature measurements has been a challenging research topic. Recently, in single cell analysis, internal temperature and heat generation inside a living cell has proven to have important roles in the survival of cells, controls many cellular activities for instance; cell division and gene expression. Moreover, cancerous cells are identified with excessive heat production. Studies have been done by researchers from different fields in the attempt to develop sensors that can accurately report the temperature inside living cells. This short review presents the most recent developments in nanoscale thermometry for biological applications, highlighting the recent advances in the near field and the far field methods. The far field thermometry cover sensors that depend on the luminescence’s of the material, for example: quantum dots, nanoparticles, and fluorescents based compounds. While, near field thermometry is based on different principles depending on the sensing mechanism used. Some of the examples mentioned are thermocouple thermometry, RNA thermometry, resonant thermometry, photoacoustic thermometry and carbon nanotubes thermometry.

References

T. M. Tritt. 2004. Thermal Conductivity: Theory, Properties, and Applications. Springer.

K. M. Mccabe and M. Hernandez. 2011. Molecular Thermometry. NIH Public Access. 67(5): 469–475.

F. Vera, R. Rivera, and C. Núñez. 2011. Burning a Candle in a Vessel, a Simple Experiment with a Long History. Sci. Educ. 20(9): 881–893.

J. M. Adams. 1994. Electrical Safety: A Guide to the Causes and Prevention of Electrical Hazards. Institution of Electrical Engineers.

K.-H. Lee. 2007. Quantum Dots: A Quantum Jump for Molecular Imaging? J. Nucl. Med. 48(9): 1408–10.

J. S. Donner, S. a Thompson, M. P. Kreuzer, G. Baffou, and R. Quidant. 2012. Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Lett. 12(4): 2107–11.

J. Davda and V. Labhasetwar. 2002. Characterization of Nanoparticle Uptake by Endothelial Cells. Int. J. Pharm. 233(1–2): 51–9.

C. Wang, R. Xu, W. Tian, X. Jiang, Z. Cui, M. Wang, H. Sun, K. Fang, and N. Gu. 2011. Determining Intracellular Temperature at Single-Cell Level by a Novel Thermocouple Method. Cell Res. 21(10): 1517–9.

F. Vetrone, R. Naccache, A. Zamarrón, A. Juarranz De La Fuente, F. Sanz-Rodríguez, L. Martinez Maestro, E. Martín Rodriguez, D. Jaque, J. García Solé, and J. A. Capobianco. 2010. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano. 4(6): 3254–3258.

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, and L. D. Carlos. 2012. Thermometry at the nanoscale. Nanoscale. 4(16): 4799–829.

S. Wang, S. Westcott, and W. Chen. 2002. Nanoparticle Luminescence Thermometry. J. Phys. Chem. B. 106(43): 11203–11209.

J. R. Lakowicz and C. D. Geddes. 1991. Topics in Fluorescence Spectroscopy. Springer,

M. J. Ruedas-Rama, J. D. Walters, A. Orte, and E. a H. Hall. 2012. Fluorescent Nanoparticles for Intracellular Sensing: A Review. Anal. Chim. Acta. 751: 1–23.

J. Lee and N. A. Kotov. 2007. Thermometer Design at the Nanoscale. Nanotoday. 2(1): 48–51.

J. Lee, A. O. Govorov, and N. a. Kotov. 2005. Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angew. Chemie. 117(45): 7605–7608.

E. Aznar, L. Mondragón, J. V Ros-Lis, F. Sancenón, M. D. Marcos, R. Martínez-Máñez, J. Soto, E. Pérez-Payá, and P. Amorós. 2011. Finely Tuned Temperature-controlled Cargo Release Using Paraffin-capped Mesoporous Silica Nanoparticles. Angew. Chem. Int. Ed. Engl. 50(47): 11172–5.

F. Ye, C. Wu, Y. Jin, Y. Chan, X. Zhang, and D. T. Chiu. 2011. Ratiometric Temperature Sensing with Semiconducting Polymer Dots. 8146–8149.

K. Oyama, M. Takabayashi, Y. Takei, S. Arai, S. Takeoka, S. Ishiwata, and M. Suzuki. 2012. Walking Nanothermometers: Spatiotemporal Temperature Measurement of Transported Acidic Organelles in Single Living Cells. Lab Chip. 12(9): 1591–3.

D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodríguez, J. a. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodríguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. García Solé. 2012. Fluorescence Nano-particles for Multi-photon Thermal Sensing. J. Lumin.

R. Sharma and C. J. Chen. 2009. Newer Nanoparticles in Hyperthermia Treatment and Thermometry. J. nanoparticle Res. 11(3): 671–689.

I. H. El-Sayed, X. Huang, and M. a El-Sayed. 2006. Selective laser Photo-thermal Therapy of Epithelial Carcinoma Using Anti-EGFR Antibody Conjugated Gold Nanoparticles. Cancer Lett. vol. 239(1): 129–35.

S. Link and M. a El-Sayed. 2003. Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals. Annu. Rev. Phys. Chem. 54: 331–66.

S. Eustis and M. a el-Sayed. 2006. Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and Its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes. Chem. Soc. Rev. 35(3): 209–17.

M. J. Ruedas-Rama, J. D. Walters, A. Orte, and E. A. H. Hall. 2012. Fluorescent Nanoparticles for Intracellular Sensing: A Review. Anal. Chim. Acta. 751: 1–23.

H. Chih-Hao, W. Anna, and H. Yang. 2011. An Accessible Approach to Preparing Water-SolubleMn2þ-Doped(CdSSe)ZnS (Core)Shell Nanocrystals for Ratiometric Temperature Sensing. ACS Nano. 5(12): 9511–9522.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian. 2007. Biological Applications of Quantum Dots. 28: 4717–4732.

Q.-F. Ma, J.-Y. Chen, X. Wu, P.-N. Wang, Y. Yue, and N. Dai. 2011. Photostability Comparison of CdTe and CdSe/CdS/ZnS Quantum Dots in Living Cells Under Single and Two-Photon Excitations. J. Lumin. 131(11): 2267–2272.

E. J. McLaurin, V. a Vlaskin, and D. R. Gamelin. 2011. Water-soluble Dual-emitting Nanocrystals for Ratiometric Optical Thermometry. J. Am. Chem. Soc. 133(38): 14978–80.

L. M. Maestro, E. M. Rodríguez, F. S. Rodríguez, M. C. I. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J. G. Solé. 2010. CdSe Quantum Dots for Two-photon Fluorescence Thermal Imaging. Nano Lett. 10(12): 5109–5115.

S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V Frangioni. 2004. Near-infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. 22(1): 93–97.

N. I. Chalmers, R. J. Palmer, L. Du-Thumm, R. Sullivan, W. Shi, and P. E. Kolenbrander. 2007. Use of Quantum Dot Luminescent Probes to Achieve Single-cell Resolution of Human Oral Bacteria In Biofilms. Appl. Environ. Microbiol. 73(2): 630–6.

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin. 2006. Water-soluble Quantum Dots for Biomedical Applications. Biochem. Biophys. Res. Commun. 348: 781–786.

M. Nakamura, S. Ozaki, M. Abe, T. Matsumoto, and K. Ishimura. 2011. One-pot Synthesis and Characterization of Dual Fluorescent Thiol-organosilica Nanoparticles as Non-photoblinking Quantum Dots and Their Applications for Biological Imaging. J. Mater. Chem. 21(12): 4689.

X. Wang, L. Liu, and M. Yan. 2013. Experimental Biology and Medicine Engineering Nanomaterial Surfaces for. 1128–1139.

E.-Q. Song, Z.-L. Zhang, Q.-Y. Luo, W. Lu, Y.-B. Shi, and D.-W. Pang. 2009. Tumor Cell Targeting Using Folate-conjugated Fluorescent Quantum Dots and Receptor-mediated Endocytosis. Clin. Chem. 55(5): 955–63.

S. Li, K. Zhang, J.-M. Yang, L. Lin, and H. Yang. 2007. Single Quantum Dots as Local Temperature Markers. Nano Lett. 7(10): 3102–5.

J.-M. Y. J.-M. Yang, H. Y. H. Yang, and L. L. L. Lin. 2010. Thermogenesis Detection of Single Living Cells Via Quantum Dots. 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 24–28 January. 963–966.

J.-M. Yang, H. Yang, and L. Lin. 2011. Quantum Dot Nano Thermometers Reveal Heterogeneous Local Thermogenesis in Living Cells. ACS Nano. 5(6): 5067–5071.

L. M. Maestro, J. E. Ramírez-Hernández, N. Bogdan, J. a. Capobianco, F. Vetrone, J. G. Solé, and D. Jaque. 2012. Deep Tissue Bio-imaging Using Two-photon Excited Cdte Fluorescent Quantum Dots Working within the Biological Window. Nanoscale. 4(1): 298.

L. M. Maestro, C. Jacinto, U. R. Silva, F. Vetrone, J. a Capobianco, D. Jaque, and J. G. Solé. 2011. CdTe Quantum Dots as Nanothermometers: Towards Highly Sensitive Thermal Imaging. Small. 7(13): 1774–8.

H. Maruyama, K. Tomita, T. Masuda, and F. Arai. 2011. Temperature Measurement by Color Analysis of Fluorescent Spectrum Using Cell Investigation Tool Impregnated With Quantum Dot for Cell Measurement on a Microfluidic Chip. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 25–30 September. 13–18.

C.-C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, and W. Fann. 2007. Characterization and Application of Single Fluorescent Nanodiamonds as Cellular Biomarkers. Proc. Natl. Acad. Sci. 104(3): 727–732.

N. Mohan, C.-S. Chen, H.-H. Hsieh, Y.-C. Wu, and H.-C. Chang. 2010. In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in Caenorhabditis Elegans. Nano Lett. 10(9): 3692–3699.

D. M. Toyli, F. Charles, D. J. Christle, V. V Dobrovitski, and D. D. Awschalom. 2013. Fluorescence Thermometry Enhanced by the Quantum Coherence of Single Spins in Diamond. Proc. Natl. Acad. Sci. 110(21): 8417–8421.

R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen. 2014. Nitrogen-vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annu. Rev. Phys. Chem. 65: 83–105.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin. 2013. Nanometre-scale Thermometry in a Living Cell. Nature. 500(7460): 54–8.

J. Wang, K. P. Loh, Z. Wang, Y. Yan, Y. Zhong, Q.-H. Xu, and P. C. Ho. 2009. Fluorescent Nanogel of Arsenic Sulfide Nanoclusters. Angew. Chemie Int. Ed. 48(34): 6282–6285.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama. 2009. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J. Am. Chem. Soc. 131(8): 2766–7.

O. Zohar, M. Ikeda, H. Shinagawa, H. Inoue, H. Nakamura, D. Elbaum, D. L. Alkon, and T. Yoshioka. 1998. Thermal Imaging of Receptor-activated Heat Production in Single Cells. Biophys. J. 4(1): 82–89.

M. Suzuki, V. Tseeb, K. Oyama, and S. Ishiwata. 2007. Microscopic Detection of Thermogenesis in a Single HeLa Cell. Biophys. J. 92(6): L46–8.

K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama. 2012. Intracellular Temperature Mapping with a Fluorescent Polymeric Thermometer and Fluorescence Lifetime Imaging Microscopy. Nat. Commun. 3: 705.

S. Uchiyama, Y. Matsumura, A. P. De Silva, and K. Iwai. 2003. Fluorescent Molecular Thermometers Based on Polymers Showing Temperature-Induced Phase Transitions and Labeled with Polarity-Responsive Benzofurazans. 75(21): 5926–5935.

T. Tsuji, S. Yoshida, A. Yoshida, and S. Uchiyama. 2013. Cationic Fluorescent Polymeric Thermometers with the Ability to Enter Yeast and Mammalian Cells for Practical Intracellular Temperature Measurements. Anal. Chem. 85(20): 9815–23.

G. Ke, C. Wang, Y. Ge, N. Zheng, Z. Zhu, and C. J. Yang. 2012. L-DNA Molecular Beacon: A Safe, Stable, and Accurate Intracellular Nano-thermometer for Temperature Sensing in Living Cells. J. Am. Chem. Soc. 134(46): 18908–11.

X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, and N. Zheng. 2011. Freestanding Palladium Nanosheets With Plasmonic and Catalytic Properties. Nat. Nanotechnol. 6(1): 28–32.

G. a Maroniche, V. C. Mongelli, V. Alfonso, G. Llauger, O. Taboga, and M. del Vas. 2011. Development of a Novel Set of Gateway-compatible Vectors for Live Imaging in Insect Cells. Insect Mol. Biol. 20(5): 675–85.

J. S. Donner, S. A. Thomson, C. Alonso-Ortega, J. Morales, L. G. Rico, S. I. C. O. Santos, and R. Quidant. 2013. Imaging of Plasmonic Heating in a Living Organism. ACS Nano. 7(10): 8666–8672.

A. Vyalikh, A. U. B. Wolter, S. Hampel, D. Haase, M. Ritschel, A. Leonhardt, H.-J. Grafe, A. Taylor, K. Krämer, B. Büchner, and R. Klingeler. 2008. A Carbon-wrapped Nanoscaled Thermometer for Temperature Control in Biological Environments. Nanomedicine (Lond). 3(3): 321–7.

N. Inomata, M. Toda, M. Sato, A. Ishijima, and T. Ono. 2012. Pico Calorimeter for Detection of Heat Produced in an Individual Brown Fat Cell. Appl. Phys. Lett. 100(15): 154104.

L. Gao, L. Wang, C. Li, Y. Liu, H. Ke, C. Zhang, and L. V Wang. 2013. Single-cell Photoacoustic Thermometry. J. Biomed. Opt. 18(2): 26003.

Downloads

Published

2015-04-13

How to Cite

Intracellular Thermal Sensor for Single Cell Analysis -Short review. (2015). Jurnal Teknologi, 73(6). https://doi.org/10.11113/jt.v73.4409