Miniaturized Planar Tomography for Multiphase Stagnant Sample Detection

Authors

  • Nur Adila Mohd Razali Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Aizat Azmi Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Shahrulnizahani Mohammad Din Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Pei Song Chee Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Muzakkir Nor Ayob Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ruzairi Abdul Rahim Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Pei Ling Leow Dept. of Control and Mechatronic Engineering, Faculty of Electrical Eng., Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4413

Keywords:

Electrical capacitance tomography, miniaturized sensor, multiphase sample, planar tomography

Abstract

Miniaturized device offers portability, high throughput and faster time response compared to macroscale devices. In microdevices, most of the application utilizes planar electrode for microanalysis process as it is inexpensive, highly controllable system and easy for installation. In addition, miniaturized planar sensor offers great potential for microscale medical diagnosis, chemical analysis, environmental analysis, cell culture application and single cell measurement using tomography measurement. In this project, a miniaturized planar tomography system is developed for multiphase sample detection such as liquid-solid and liquid-liquid. Eight-electrode device was fabricated on the copper plated printed circuit board (PCB) using the commercial fabrication technique. The ability of the proposed device in reconstructing images of a multiphase sample using Linear Back Projection algorithm is tested. Experimental results show that the reconstructed images closely resemble with the cross-section of the stagnant multiphase sample.

References

R. A. Rahim. 2005. High Speed Data Acquisition System for Computer Tomographic Imaging Instrumentation. 5.

B. S. Hoyle, H. Mccann, and D. M. Scott. 2005. Process Tomography. In Process Imaging for Automatic Control. D. Scott and H. McCann. Eds. CRC Press. 85–119.

T. Dyakowski, L. F. C. Jeanmeure, and A. J. Jaworski. 2000. Applications of Electrical Tomography for Gas–solids and Liquid–Solids Flows — A Review. Powder Technol. 112(3): 174–192.

D. Wolf, A. Lubk, F. Roder, and H. Lichte. 2013. Electron Holographic Tomography. Curr. Opin. Solid State Mater. Sci. 17(3): 126–134.

J. El-Ali, P. K. Sorger, and K. F. Jensen. 2006. Cells on chips. Nature. 442(7101): 403–11.

T. Sun, S. Tsuda, K.-P. Zauner, and H. Morgan. 2009. Single Cell Imaging Using Electrical Impedance Tomography. In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 858–863.

C. B. Sippola and C. H. Ahn. 2005. A Ceramic Capacitive Pressure Microsensor with Screen-Printed Diaphragm. IEEE. 1271–1274.

C. Elbuken, T. Glawdel, D. Chan, and C. L. Ren. 2011. Detection of Microdroplet Size and Speed Using Capacitive Sensors. Sensors Actuators A Phys. 171(2): 55–62.

M. A. Miled and M. Sawan. 2012. Dielectrophoresis-Based Integrated Lab-on-Chip for Nano and Micro-Particles Manipulation and Capacitive Detection. In IEEE Transactions on Biomedical Circuits And Systems. 6(2): 120–132.

R. S. Pai, T. J. Roussel, M. M. Crain, D. J. Jackson, R. P. Baldwin, R. S. Keynton, J. F. Naber, and K. M. Walsh. 2005. Lab-on-a-chip Systems with Three Dimensional Microelectrodes. In 3rd IEEE EMBS Special Topic Conference on Microtechnology in Medicine and Biology. 18–21.

T. Sun, S. Tsuda, K.-P. Zauner, and H. Morgan. 2010. On-chip Electrical Impedance Tomography for Imaging Biological Cells. Biosens. Bioelectron. 25(5): 1109–15.

T. a York, T. N. Phua, L. Reichelt, a Pawlowski, and R. Kneer. 2006. A Miniature Electrical Capacitance Tomograph. Meas. Sci. Technol. 17(8): 2119–2129.

L. Jing. 2010. A Novel Image Reconstruction Algorithm for Electrical Capacitance Tomography. Int. Conf. Intell. Syst. Des. Eng. Appl. 1: 120–123.

Ø. Isaksen. 1996. A Review of Reconstruction Techniques for Capacitance Tomography. Meas. Sci. Technol. 7(3): 325–337.

T. Loser, R. Wajman, and D. Mewes. 2001. Electrical Capacitance Tomography: Image Reconstruction Along Electrical Field Lines. Meas. Sci. Technol. 12(8): 1083–1091.

B. Wang, W. Tan, Z. Huang, H. Ji, and H. Li. 2014. Image Reconstruction Algorithm for Capacitively Coupled Electrical Resistance Tomography. Flow Meas. Instrum. 40: 216–222.

A. Azmi, R. A. Rahim, P. S. Chee, S. M. Din, N. Muzakkir, N. Ayob, and P. L. Leow. 2014. Jurnal Teknologi Miniaturized Planar Sensor Development. J. Teknol. 8: 101–105.

E. J. Mohamad. 2012. A Segmented Capacitance Tomography for Visualising.

G. T. Bolton, W. J. Korchinsky, and R. C. Waterfall. 1998. Calibration of Capacitance Tomography Systems for Liquid–liquid Dispersions. Meas. Sci. Technol. 9: 1797–1800.

I. Evans and T. York. 2004. Microelectronic Capacitance Transducer for Particle Detection. IEEE Sens. J. 4(3): 364–372.

Downloads

Published

2015-04-13

How to Cite

Miniaturized Planar Tomography for Multiphase Stagnant Sample Detection. (2015). Jurnal Teknologi, 73(6). https://doi.org/10.11113/jt.v73.4413