Simulation of Single Channel Magnetic Induction Spectroscopy for Fetal Hypoxia Detection

Authors

  • Zulkarnay Zakaria Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Shazwani Sarkawi Biomedical Electronic Engineering, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Jurimah Abdul Jalil Biomedical Electronic Engineering, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Ibrahim Balkhis Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Mohamad Aliff Abd Rahim Biomedical Electronic Engineering, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Nazahah Mustafa Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor bahru, Johor Malaysia
  • Mohd Hafiz Fazalul Rahiman Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia

DOI:

https://doi.org/10.11113/jt.v73.4427

Keywords:

Fetal blood sampling, single channel magnetic induction spectroscopy

Abstract

Conventional fetal scalp blood sampling (FBS) need an invasive measurement to detect fetal hypoxia in fetus. This paper describe non-invasive technique employing single channel magnetic induction technique. The simulation was done to determine the best range of frequency value to detect biological tissue and tested with different value of conductivity value. 

References

Rosemount. 2010. The Theory of pH Measurement. Emerson Process Manag. November: 1–8. Available at: http://www2.emersonprocess.com/. Accessed January 1, 2015.

2. Filomena Camoes M. A Century of pH Measurement. Chem Int. 2010;32(2):3-7. doi:10.1515/ci.2010.32.2.3.

Kendall, G., Peebles, D. 2005. Acute Fetal Hypoxia: The Modulating Effect of Infection. Early Hum Dev. 81(1): 27–34. doi:10.1016/j.earlhumdev.2004.10.012.

Kaneshiro, N. K., Zieve, D. 2012. Fetal Scalp pH Testing. Medlin Med Encycl. 1(1): 1–2.

Holzmann, M., Wretler, S., Cnattingius, S., Nordström, L. 2015. Neonatal Outcome and Delivery Mode in Labors with Repetitive Fetal Scalp Blood Sampling. Eur J Obstet Gynecol Reprod Biol. 184: 97–102. doi:10.1016/j.ejogrb.2014.11.012.

Jørgensen, J. S., Weber, T. 2014. Fetal Scalp Blood Sampling in Labor-A Review. Acta Obstet Gynecol Scand. 93: 548–555. doi:10.1111/aogs.12421.

Women and Newborn Health Service. 2008. Fetal Scalp Blood Sampling. In: Clinical Guidelines. King Edward Memorial Hospital. 1–4.

Tuffnell, D., Haw, W. L., Wilkinson, K. 2006. How Long Does a Fetal Scalp Blood Sample Take? BJOG An Int J Obstet Gynaecol. 113: 332–334. doi:10.1111/j.1471-0528.2006.00859.x.

Wiberg-Itzel, E., Lipponer, C., Norman, M., et al. 2008. Determination of pH or Lactate in Fetal Scalp Blood in Management of Intrapartum Fetal Distress: Randomised Controlled Multicentre Trial. BMJ. 336(December): 1284–1287. doi:10.1136/bmj.39553.406991.25.

Riedel, C. H., Dossel, O. 2001. Non-contact Measurement of the Electrical Impedance of Biological Tissue. 2001 Conf Proc 23rd Annu Int Conf IEEE Eng Med Biol Soc. 3: 3077–3080. doi:10.1109/IEMBS.2001.1017451.

Scharfetter, H., Casañas, R., Rosell, J. 2003. Biological Tissue Characterization by Magnetic Induction Spectroscopy (MIS): Requirements and Limitations. IEEE TRANSCATIONS Biomed Eng. 50(7): 870–880.

Barai, A., Watson, S., Griffiths, H., Patz, R. 2012. Magnetic Induction Spectroscopy: Non-contact Measurement of the Electrical Conductivity Spectra of Biological Samples. Meas Sci Technol. 23(8): 1–11. doi:10.1088/0957-0233/23/8/085501.

González, C., Pérez, M., Hevia, N., et al. 2010. Over-hydration Detection in Brain by Magnetic Induction Spectroscopy. J Phys Conf Ser. 224: 012123. doi:10.1088/1742-6596/224/1/012123.

Hevia-Montiel, N., Soto, E. S., Gonzalez-diaz, C. A. 2012. Early Breast Cancer Detection by Magnetic Induction Spectroscopy. Trans JAPANESE Soc Med ANDS Biol Eng. 33(2):

Min, S. W., Kim, E. S., Myung, S. H. 2009. Calculation and Measurement of Induced Current Density Inside Human Body Under 60Hz ELF Magnetic Fields. 185–188.

González, C. 2012. Simulation of Multi-Frequency Induced Currents in Biophysical Models and Agar Phantoms of Breast Cancer. J Electromagn Anal Appl. 04(August): 317–325. doi:10.4236/jemaa.2012.48044.

Schroeder, M., Sadasiva, A., Nelson, R. M. 2008. Effective Permittivity of Biological Materials: An Analysis on Te Role of Water Content and Type Using Mixing Formulas. J Biomech Biomed Biophys Eng. 2(1): 1–11.

Gabriel, C., Gabriel, C., Gabriel, S., Gabriel, S., Corthout, E., Corthout, E. 1996. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys Med Biol. 41: 2231–49. doi:10.1088/0031-9155/41/11/001.

Wolf, M., Gulich, R., Lunkenheimer, P., Loidl, A. 2011. Broadband Dielectric Spectroscopy on Human Blood. Biochim Biophys Acta. 1810(727): 1–17.

Li, X. 2010. Magnetoacoustic Tomography with Magnetic Induction for Electrical Conductivity Imaging of Biological Tissue. September.

Zakaria, Z., Abdul Rahim, R., Mansor, M. S. B., et al. 2012. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography. Sensors (Basel). 12(6): 7126–56. doi:10.3390/s120607126.

Kangarlu, A., Robitaille, P. L. 2000. Biological Effects and Health Implications in Magnetic Resonance Imaging. Concepts Magn Reson. 12(5): 321–359.

Occhialini, A. 1914. The Dielectric Constant of Hydrogen at High Pressure. Atti Accad Lincei. 22(8): 482–484.

Downloads

Published

2015-04-13

How to Cite

Simulation of Single Channel Magnetic Induction Spectroscopy for Fetal Hypoxia Detection. (2015). Jurnal Teknologi, 73(6). https://doi.org/10.11113/jt.v73.4427