Different Types of Microbial Fuel Cell (MFC) Systems for Simultaneous Electricity Generation and Pollutant Removal

Authors

  • S. M. Zain Department of Civil and Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • N. L. Ching Department of Civil and Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • S. Jusoh Department of Civil and Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • S. Y. Yunus Department of Civil and Structural Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.4544

Keywords:

Microbial fuel cell (MFC), electricity, pollutants, carbon, nitrogen

Abstract

The aim of this study is to identify the relationship between the rate of electricity generation and the rate of carbon and nitrogen removal from wastewater using different MFC processes.  Determining whether the generation of electricity using MFC process could be related to the rate of pollutant removal from wastewater is noteworthy. Three types of MFC process configurations include the batch mode (SS), a continuous flow of influent with ferricyanide (PF) as the oxidizing agent and a continuous flow of influent with oxygen (PU) as the oxidizing agent. The highest quantity of electricity generation was achieved using the continuous flow mode with ferricyanide (0.833 V), followed by the continuous flow mode with oxygen (0.589 V) and the batch mode (0.352 V). The highest efficiency of carbon removal is also achieved by the continuous flow mode with ferricyanide (87%), followed by the continuous flow mode with oxygen (51%) and the batch mode (46%). Moreover, the continuous flow mode with ferricyanide produced the highest efficiency for nitrogen removal (63%), followed by the continuous flow mode with oxygen (54%) and the batch mode (27%).

References

Kim, B. H., Chang, I. S., Gadd, G. M. 2007. Challenges in Microbial Fuel Cell Development and Operation. Applied Microbiology and Biotechnology. 76: 485–94.

Liu, H., Logan, B. E. 2004. Electricity Generation using an Air-cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane. Environmental Science and Technology. 38(14): 4040–46.

Logan, B. E., Aelterman, P., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguiac, S., Verstraete, W., Rabaey, K. 2006. Microbial Fuel Cells: Methodology and Technology. Environmental Science and Technology. 40(17): 5181–92.

Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., Verstraete, W. 2004. Biofuel Cells Select for Microbial Consortia that Self Mediate Electron Transfer. Applied and Environmental Microbiology. 70(9): 5373–82.

Virdis, B., Rabaey, K., Yuan, Z., Keller, J. 2008. Microbial Fuel Cells for Simultaneous Carbon and Nitrogen Removal. Water Research. 42: 3013–24.

Choi, Y., Jung, E., Park, H. S., Paik, S. R., Jung, S., Kim, S. 2004. Construction of Microbial Fuel Cells using Thermophilic Microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull. Korean Chem. Soc. 25(6): 813–18.

Rittmann, B. E., McCarty, P. L. 2001. Environmental Biotechnology. Principles and Applications. McGraw-Hill, Boston.

Angenent, L. T., Sung, S., Raskin, L. 2002. Methanogenic Population Dynamics during Startup of a Full-scale Anaerobic Sequencing Batch Reactor Treating Swine Waste. Water Research. 36(18): 4648–54.

Min, B., Cheng, S., Logan, B. E. 2005. Electricity Generation using Membrane and Salt Bridge Microbial Fuel Cells. Water Research. 39(9): 1675–86.

Potter, M. C. 1911. Electrical Effects Accompanying the Decomposition of Organic Compunds. Proceedings of the Royal Society of London Series B1911. 84: 260–76.

Lewis, K. 1966. Symposium on Biochemistry Microorganisms:IV. Biochemical Fuel Cells. Bacteriological Reviews. 30(1): 101–13.

Kim, B. H., Park, D. H., Shin, P. K., Chang, I. S., Kim, H. J. 1999. Mediator-less Biofuel Cell. U.S Patent 5976719.

N. S. N. Hisham, S. M. Zain, S. Jusoh, N. Anuar, F. Suja, A. Ismail, N.E.A. Basri. 2013. Microbial Fuel Cells using Different Types of Wastewater for Electricity Generation and Simultaneously Removed Pollutant. Journal of Engineering Science and Technology. 8(3): 317–326.

S. M. Zain, N. S Roslani, R. Hashim, N. Anuar, F. Suja, W. R. W. Daud, N. E. A. Basri. 2011. Microbial Fuel Cells using Mixed Cultures of Wastewater for Electricity Generation. Sains Malaysiana. 40(9): 933–997.

Bond, D. R., Lovley, D. R. 2003. Electricity Production by Geobacter sulfurreducens Attached to Electrodes. Applied Environmental and Microbiology. 69(3): 1548–55.

Eliza, M., Mark, R., Wiesner. 2008. Fast Proton-Conducting Ceramic Membranes Derived from Ferroxane Nanoparticle-Precursors as Fuel Cell Electrolytes. Journal of Membrane Science. 318: 79–83.

Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., Elisen, J. A., Seshadri, R., Ward, N., Methe, B., Clayton, R. A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R. T., Dodson, R. J., Durkin, A. S., Haft, D. H., Kolonay, J. F., Madupu, R., Peterson, J. D., Ymayam, L. A., White, O., Wolf, A. M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Lee, C., Mueller, J., Hkhouri, H., Gilll, J., Utterback, T. R., McDonald, L. A., Feldblyum, T. V., Smith, H. O., Venter, J. C., Nealson, K. H., Fraser, C. M. 2002. Genome Sequence of the Dissimilatory Metal Ion-Reducing Bacterium Shewanella oneidensis. Nature Biotechnology. 20: 1118–23.

Lorenzo, M. D., Scott, K., Curtis, T. P., Head, I. M. 2009. Effects of Increasing Anode Surface Area on the Performance of a Single Chamber Microbial Fuel Cell. Chemical Engineering Journal. 156: 40–8.

Ieropoulos, I., Melhuish, C., Greenman, J., Horsfield, I. 2005. EcoBot-II: An Artificial Agent with a Natural Metabolism. Journal of Advanced Robotic Systems. 2(4): 295–300.

Lim,S. S, J. M. Jahim, S. N.Shari, M. Ismail, W. R. W. Daud. 2012. Development of Microbial Fuel Cell for Palm Oil Mill Effluent Treatment. Sains Malaysiana. 41(10): 1253–1261.

Rodrigo, M. A., Cañizares, P., Lobato, J., Paz, R., Sãez, C., Linares, J. J. 2007. Production of Electricity from the Treatment of Urban Waste Water using a Microbial Fuel Cell. Journal of Power Sources. 169(1): 198–204.

G. Tayhas, R. Palmore, P.N. Bartlett. 2008. Bioelectrochemistry Fundamentals, Experimental Techniques and Application. John Wiley & Sons Ltd., Chichester, England.

Jiang, J., Zhao, Q., Zhang, J., Zhang, G., Lee, D. J. 2009. Electricity Generation from Bio-Treatment of Sewage Sludge with Microbial Fuel Cell. Bioresource Technology. 100(23): 5808–5812.

Hu, S. W., Yang, F. L., Sun, C., Zhang, J. Y., Yang, T. H. 2007. Simultaneous Removal of COD and Nitrogen using a Novel Carbon-Membrane Aerated Biofilm Reactor. Journal of Environmental Sciences. 20: 142–7.

S. V., Mohan, V., Goud, R. K., Sarma, P. N. 2008. Effect of Anodic pH Microenvironment on Microbial Fuel Cell (MFC) Performance in Concurrence with Aerated and Ferricyanide Catholytes. Bioengineering and Environmental Centre, Indian Institute of Chemical Technology. 11: 371–75.

Puig, S., Serra, M., Coma, M., Cabre, M., Balaguer, M. D., Colprim, J. 2010. Effect of pH on Nutrient Dynamics and Electricity Production using Microbial Fuel Cells. Bioresource Technology. 101: 9594–99.

P. Cristiani, M. L. Carvalho, E. Guerrini, M. Daghio, C. Santoro, B. Li. 2013. Cathodic and Anodic Biofilms in Single Chamber Microbial Fuel Cells. Bioelectrochemistry. 92: 6–13.

Downloads

Published

2015-05-14

How to Cite

Different Types of Microbial Fuel Cell (MFC) Systems for Simultaneous Electricity Generation and Pollutant Removal. (2015). Jurnal Teknologi, 74(3). https://doi.org/10.11113/jt.v74.4544