A NOVEL PROCESS OF WATER PURIFICATION SYSTEM FOR LARGE- SCALE PRODUCTIONS

Authors

  • Khaled Ali Abuhasel Assistant Professor, Mechanical Engineering Department-Industrial Engineering Program, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia

DOI:

https://doi.org/10.11113/jt.v78.4592

Keywords:

Purification system, gold mining, minerals extraction, algae biomass, photosynthetic, water treatment

Abstract

Purification system has recently gained increasing importance, especially in water treatment systems. Biological water treatment systems with microalgae are now widely accepted. Moreover, algal wastewater treatment systems are effective when compared to conventional treatment systems. The proposed purification system aims to provide a process for using saline water, and saline reject water produced in water purification for gold mining production. Also, it provides a method for growing and harvesting algae utilizing saline water as growth medium for recycling waste water to extract the remaining metals from it. This trend of purification system using harvested algae has various applications, and may be used in wide aspects including, but not limited to, algae biomass production to extract metals, and reducing the cost of gold mining production.

    

Author Biography

  • Khaled Ali Abuhasel, Assistant Professor, Mechanical Engineering Department-Industrial Engineering Program, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia

    Assistant Professor, Mechanical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia.

References

Kalesh, N.S., Nair, S.M. 2005. The Accumulation Levels of Heavy Metals (Ni, Cr, Sr, & Ag) in Marine Algae from Southwest Coast of Ä°ndia. Toxicological & Environmental Chemistry. 87(2): 135-146.

Jothinayagi, N., Anbazhagan, C. 2009. Heavy Metal Monitoring of Rameswaram Coast by Some Sargassum species. American-Eurasian Journal of Scientific Research. 4 (2): 73-80.

Alp, M.T., Sen, B., Ozbay, O. 2011. Heavy Metal Levels in Cladophora glomerata which Seasonally Occur in the Lake Hazar. Ekoloji. 20(78): 13-17. doi: 10.5053/ekoloji.2011.783.

Alp, M.T., Ozbay, O., Sungur, M.A. 2011. Determination of Heavy Metal Levels in Sediment and Macroalgae (Ulva sp. and Enteromorpha sp.) on the Mersin Coast. Ekoloji. 21, 82: 47-55 (2012).

Palmer, C.M. 1969. A Composite Rating of Algae Tolerating Organic Pollution. J. Phycology. 5: 78-82.

MacKenthun, K.M. Radioactive wastes. 1969. Chapt 8. Ä°n The Practice of Water Pollution Biology. U.S. Dept. Interior, Fed. Water Pol. Contr. Admin., Div. of Tech. Support. U.S. Printing Office 1969.

Şen, B. Nacar, V.E., V. Su Kirliliği ve Algler. 1988. Fırat Havzası I. Çevre Sempozyumu Bildiriler Kitabı. 405-21.

Reddy, K.R. 1983. Fate of Nitrogen and Phosphorus in a Wastewater Retention Reservoir Containing Aquatic Macrophytes. Journal of Environmental Quality. 12(1):137-41.

Lloyd, B.J. and Frederick, G.L. 2000. Parasite Removal by Waste Stabilisation Pond Systems and the Relationship Between Concentrations in Sewage and Prevalence in the Community. Water Science and Technology. 42(10): 375-86.

Oswald, W. J. 1988. The Role of Microalgae In Liquid Waste Treatment and Reclamation. In: C.A. Lembi and J.R. Waalnd (eds). Algae and Human Affairs. Cambridge University Press. 403-31.

Droste, R.L. 1997. Theory and Practice of Water and Wastewater Treatment. John Wiley and Sons, New York 1997.

Oswald, W. J. 1995. Ponds in Twenty First Century. Water Science and Technology. 31(12):1-8.

T. L. Walker, S. Purton, D. K. Becker, C. 2005. Microalgae as Bioreactors. Plant Cell Rep. 24: 629-641.

M. A. Borowitzka. Algal Biotechnology Products and Processes–Matching Science and Economics. J. Appl. Phycol. 4: 267-279.

Kay, R. A. 1991. Microalgae as Food and Supplement. Crit. Rev. Food Sci. Nutr. 30: 555-573.

R. E. Schwartz, C. F. Hirsch, D. F. Sesin, J. E. Flor, M. Chartrain, R. E. Fromtling et al. 1990. Pharmaceuticals from Cultured Algae. J. Ind. Microbiol. 5: 113-124.

C. Vilchez, I. Garbayo, M. V. Lobato, J. M. Vega. 1997. Microalgae-Mediated Chemicals Production and Wastes Removal. Enzyme Microb. Techonol. 20: 562-572.

Metzger, P. Largeau, C. 2005. Botryococcus braunii: A Rich Source for Hydrocarbons and Related Ether Lipids. Appl. Microbiol. Biotechnol. 66: 486-496.

Chisti, Y. 2007. Biodiesel from Microalgae. Biotechnol Adv. 25: 294-306.

Chisti, Y. 2008. Biodiesel from Microalgae Beats Bioethanol. Trends Biotechnol. 26: 126-131.

Eriksen, N. T. 2008. The Technology of Microalgal Culturing. Biotechnol. Lett. 30: 1525-1536.

Carvalho, A. P., Meireleles, L. A., Malcata, F. X. 2006. Microalgal Reactors: A Review of Enclosed System Designs and Performances. Biotechnol. Prog. 22: 1490-1506.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H. Posten, C., Kruse, O., Hankamer, B. 2008. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenerg. Res. 1: 20-43.

Li, Y. Horsman, M., Wu, N., Lan, C. Q. Duboi-Calero N. 2008. Biocatylysts and Bioreactor Design. Biotechnol. Prog. 24: 815-820.

Demirbas, A. 2009. Production of Biodiesel from Algae Oils. Energy Sources Part A-Recovery Util. Environ. Eff. 31: 163-168.

Gouveia, L., Oliveira, A. C. 2009. Microalgae as a Raw Material for Biofuels Production. J. Ind. Microbiol. Biotechnol. 36: 269-274.

Chiu, S. Y., Kao, C. Y. , Tsai, M. T. , Ong, S. C. , Chen, C. H., Lin, C. S. 2009. Lipid Accumulation and CO2 Utilization of Nannochloropsis oculata in Response to CO2 Aeration. Bioresour. Technol. 100: 833-838.

Pulz, O., Scheibenbogen, K. 1998. Photobioreactors: Design and Performance with Respect to Light Energy Input. Adv. Biochem. Eng./Biotechnol. 59: 124–154.

Shelef, G., Oswald, W.J., Golueke, C.G.1969. The Continuous Culture of Algal Biomass on Wastes. In Malek I (ed.), Continuous Cultivation of Microorganisms. Prague Academy. 601-629.

Dor, I. 1975. High Density, Dialysis Culture of Algae on Sewage. Wat. Res. 9: 251-254.

Doran, M. D., Boyle, W. 1979. Phosphorus Removal by Activated Algae. Wat. Res. 13: 805-812.

Sasaki K, Mori H, Nishizawa Y, Nagai S .1988. Denitrifying and Photoheterotrophic Growth of Rhodobacter Sphaeroides S under Anaerobic-Dark and Light Conditions. J. Ferment. Technol. 66: 27-32.

Hashimoto, S., Furukawa, K.1989. Nutrient Removal from Secondary Effluent by Filamentous Algae. J. Ferment. Bioengng 67: 62-69.

Travieso, L., Benitez, F., Weiland, P., Sãnchez, E., Dupeyrõn, R., Dominguez, A. R.1996. Experiments on Immobilization of Microalgae for Nutrient Removal in Wastewater Treatments. Biores. Technol. 55: 181-186.

Glombitza, K. W., Koh, M. 1989. Secondary Metabolites of Pharmaceutical Potentials. In Cresswell RC, Rees TAV, Shah N (eds). Algal and Cyanobacterial Biotechnology, Longman, Harlow. 161-238.

Boussiba, S., Vonshak, A., Cohen, Z., Avissar, Y., Richmond, A. 1987. Lipid and Biomass Production by the Halotolerant Microalga Nannochloropsis Salina. Biomass 12: 37-47.

Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yakayama, S., Yamaberi, K. 1994. CO2 Fixation and Oil Production Using Microalgae. J. Ferment. Bioengng. 78: 479-482.

Negoro, M., Shioji, N., Miyamoto, K., Miura, Y. 1991. Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX. Appl. Biochem. Biotech. 28/29: 877-886.

Yoshihara, K., Nagase, H., Eguchi, K., Hirata, K., Miyamoto, K. 1996. Biological Elimination of Nitric Oxide and Carbon Dioxide from Flue Gas by Marine Microalga NOA-113 Cultivated In Long Tubular Photobioreactor. J. Ferment. Bioengng. 82: 351-354.

Shen, J., Hirayama, O. 1991. Hydrogen Photoproduction and Denitrification by Photosynthetic Bacteria Isolated From Lake Nakaumi and Its Vicinity. J. Ferment. Bioengng 72: 338-342.

Sawayama, S., Inoue, S., Yokoyama, S. 1994. Continuous Culture of Hydrocarbon-Rich Microalga Botryococcus Braunii in Secondarily Treated Sewage. Appl. Microbiol. Biotechnol. 41: 729-731.

Gantar, M., Obreht, Z., Dalmacija, B. 1991. Nutrient Removal and Algae Succession during the Growth of Spirulin Platensis and Scenedesmus Quadricauda on Swine Wastewater. Biores. Technol. 36: 167-171

Downloads

Published

2016-02-09

Issue

Section

Science and Engineering

How to Cite

A NOVEL PROCESS OF WATER PURIFICATION SYSTEM FOR LARGE- SCALE PRODUCTIONS. (2016). Jurnal Teknologi (Sciences & Engineering), 78(2). https://doi.org/10.11113/jt.v78.4592