Review of Micro-bubble Ship Resistance Reduction Methods and the Mechanisms that Affect the Skin Friction on Drag Reduction from 1999 to 2015
DOI:
https://doi.org/10.11113/jt.v74.4650Keywords:
Skin friction, micro-bubble, turbulent boundary layer, electrolysis, drag reductionAbstract
In order to lower down the fuel consumption and to achieve higher speed of ship, reduction in ship resistance has been the major topic of research for a long time. The most important factor in ship resistance is skin friction resistance. Micro-bubble has been shown to be able to reduce skin friction. This micro-bubble method gives the possibility to lower the friction without any change in the present hull form of a ship. The application of the micro-bubble technique reduces the surface friction by a variation of the viscosity of the fluid around the ship and makes a modification in the structure of the turbulent boundary layer. However, not much is known about the correct size, quantity, area of coverage which can effectively form a skin friction reducing mechanism. There are many established methods, such as Venturi tube type generator, tangential water-jet and forming of dissolve air and also a chemical process, such as electrolysis, may result in bubble production [1]. The use of micro-bubble as reducing agent of drag can lead to the creation of bubbly mixture near the flow surface that can significantly advances in the understanding of the underlying physical process of drag reduction. The current applications of these techniques to surface ships are discussed.
References
Jones, S. F., Evans, G. M., Galvin, K. P. 1999. Bubble Nucleation from Gas Cavity. Advances in Colloid and Interface Science. 80: 27–50.
Bernal, J. A. J. 2004. Microbubble Drag Reduction Phenomenon Study in a Channel Flow (PhD. Thesis). Texas A&M University.
Fukuda, K., Tokunaga, J., Nobunaga, T., Nakatani, T., Iwasaki, T., 2000. Frictional Drag Reduction with Air Lubricant Over a Super-Water-Repellent Surface. J. Mar SciTechnol. 5: 123–130.
Choi, K. S. 2000. Europian Drag Reduction Research Recent Developments and Current Status. Fluid Dyn. Res. 26: 325–335.
Janssen, L. J. J., Sillen C. W. M. P., Barendrecht, E., Van Stralen, S. J. D. 1984. Bubble Behaviour During Oxygen and Hydrogen Evolution at Transparent Electrodes in KOH Solution. ElectrochimActa. 29(5): 633–642.
Xu, J., Dong, S., Maxey, M. R. 2007. Turbulent Drag Reduction by Constant Near-wall Forcing. J. Fluid Mech. 582: 79–101.
P.V.Skudarnov and C. X. Lin, 2006. Density Ratio and Turbulence Intensity Effects in Microbubble Drag Reduction Phenomenon. 17–22.
Ortiz Villafuerte, J., Hassan. Y. A. 2006. Investigation of Microbubble Boundary Layer Using PIV. Trans ASME J. Fluids Eng. 128: 507–519.
Lu, J., Fernandez, A., and Tryggvason, G. 2005. The Effect of Bubbles on the Wall Drag in a Turbulent Channel Flow. Phys. Fluids. 17: 95–102.
Merkle, C. L. and Deutsch, S. 1992. Microbubble Drag Reduction in Liquid Turbulent Boundary Layers. Appl. Mech. Rev. 45(3): 103–27.
McCormick, M. E. and Bhattacharyya, R. 1973. Drag Reduction of a Submersible Hull by Electrolysis. Naval Engineers Journal. 85(2): 11–16.
Bogdevich, V. G., Evseev, A. R., Malyuga, A. G., Migirenko, G.S. 1977. Gas Saturation Effect on Near Wall Turbulence Characteristics. In: Second International Conference on Drag Reduction. Cambridge, England, BHRA. 25–37.
Merkle, L. C. L, Deutsch, S. 1989. Lecture notes in Engineering. 46: 291.
Madavan, N. K., Deutsch, S., and Merkle, C. L. 1984. Reduction of Turbulent Skin Friction by Microbubbles. Phys. Fluid. 27: 356–363.
Madavan, N. K., Deutsch, S., and Merkle, C. L. 1985a. Measurements of Local Skin Friction in a Microbubble Modified Turbulent Boundary Layer. J. Fluid. Mech. 156(2): 37–56.
Guin, M. M., Kato, H., Yamaguchi, H., Maeda, M., Miyanaga, M. 1996. Reduction of Skin Friction by Microbubbles and Its Relation With Near-Wall Bubble Concentration in a Channel. Inter. Mar. Sci. Technol. 1(2): 41–54.
Kim, S. Y., Cleaver, J. W. 1995. The Persistence of Drag Reduction Following the Injection of Microbubbles Into a Turbulent Boundary Layer. Int. Commun. Heat Mass Transfer. 22: 353–357.
Kato, H., Iwashina, T., Miyanaga, M., Yamaguchi, H. 1999. Effect Of Micro-Bubbles Cluster on Turbulent Flow Structure. IUTAM Symposium on Mehanics of Passive and Active Flow Control. 255–260.
Kodama, Y., Kakugawa, A., Takahashi, T. and Kawashima, H. 2000. Experimental Study on Microbubbles and Their Applicability to Ships for Skin Friction Reduction. International Journal of Heat and Fluid Flow. 21: 582–588.
Gabillet, C., Collin, C., Fabre, J. 2002. Experimental Study of Bubble Injection in a Turbulent Boundary Layer. Int. J. Multiphase Flow. 28: 553–578.
Moriguchi, Y., Kato, H. 2002. Influence of Microbubble Diameter and Distribution on Frictional Resistance Reduction. J. Mar. Sci. Technol. 7: 79–85.
Latorre, R., Miller, A., and Philips, R. 2003. Ship Hull Drag Reduction Using Bottom Air Injection. Ocean Engineering. 30: 161–176.
Deutsch, S., Money, M. et al. 2003. Microbubble Drag Reduction in Rough Wall Turbulent Boundary Layer. Proc. ASME Fluids Eng. 1–9.
Hassan, Y. A., Gutierrez –Torres, C. C., Jimenez-Bernal, J. A. 2005. Temporal Correlation Modification by Microbubbles Injection in a Boundary Layer Channel Flow. Int. Commun Heat Mass Transfer. 32(8): 1009–1015.
Van den Berg, T.H., Luther, S., Lathrop, D.P., Lohse, D. 2005. Drag Reduction in Bubbly Taylor-Couette Turbulence. Phys. Rev. Lett. 94: 044501.
Akoi, K., Hishida, K., Kodama, Y. 2006. Measurement of Near Wall Turbulent Structure in a Microbubble Flow Using a Highly Magnifying Telecentric PIV/PTV System. In: Proceedings of the 13th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 26–29 June.
Murai, Y., Oishi, Y., Yamamoto, F. 2006. Turbulent Shear Stress Profiles in a Bubbly Channel Flow Assessed by Particle Tracking Velocimetry. Exp. Fluids. 41(2): 343–352.
Murai, Y., Fukuda, H., Oishi, Y., Kodama, Y., Yamamoto, F. 2007. Skin Friction Reduction by Large Air Bubbles in a Horizontal Channel Flow. Itr. J. Multiphase Flow. 33: 147–163.
Janssen, L. J. J., Sillen, C. W. M. P., Barendrecht, E., Van Stralen, S. J. D. 1984. Bubble Behaviour During Oxygen and Hydrogen Evolution at Transparent Electrodes in KOH Solution. ElectrochimActa. 29(5): 633–642.
Shen, X., Ceccio, S.L., Perlin, M. 2006. Influence of Bubble Size on Microbubble Drag Reduction. Exp. Fluids. 41(3): 415–424.
Elbing, B. R., Winkel, E. S., Lay, K. A., Ceccio, S. L., Dowling, D. R., Perlin, M. 2005. Bubble-induced Skin Friction Drag Reduction and the Abrupt Transition to Air-Layer Drag Reduction. Inter. Fluid Mech. 612(1): 1–23.
Jacob, B., Olivieri, A., Miozzi, M., Campana, E.F., Piva, R. 2010. Drag Reduction by Microbubbles in a Turbulent Boundary Layer. Phys. Fluids. 22: 115104.
Vaclav Tesar. 2014. Mechanism of Fluidic Microbubble Generation, Part 1: Growth By Multiple Conjuctions. Chemical Engineering Science. 116: 843–848.
Merkle, C.L. and Deutsch, S. 1990. Drag Reduction in Liquid Boundary Layers by Gas Injection. The Smithsonian Data System. 43: 351–412.
Bernal, J. A. J. 2004. Microbubble Drag Reduction Phenomenon Study in a Channel Flow (PhD. Thesis). Texas A&M University.
Steven L. Ceccio, 2010. Friction Drag Reduction of External Flows with Bubble and Gas Injection. Ann. Rev. Fluid Mech. 42: 183–203.
Kodama, Y., Kakugawa, A., Takahashi, T., Kawashima, H. 2000. Experimental Study on Microbubbles and Their Applicability to Ships for Skin Friction Reduction. Int. Heat Fluid Flow. 21(5): 82–88.
Kanai, A., Miyata, H. 2001. International Journal for Numerical Methods in Fluids. 35: 593.
Winkel, E. S., Ceccio., S. L., Dowling, D. R., and Perlin, M. 2004. Bubble Size Distributions Produced by Wall Injection of Air Into Flowing Freshwater, Saltwater, and Surfactants Solutions. Exp. Fluids. 37: 802–810.
Takahashi, T., Kakugawa, A. et al. 2001. Mechanisms and Scale Effect of Skin Friction Reduction by Microbubble. 2ndSymp. On Smart Control. 1–9.
Kawamura, T., Moriguchi, Y., Kato, H., Kakugawa, A., Kodama, Y. 2003. Effect of Bubble Size on the Microbubble Drag Reduction of a Turbulent Boundary Layer. Proc. ASME Fluids Eng. Conf. Summer Meeting. 1–8.
Janssen, L. J. J., Sillen C. W. M. P., Barendrecht, E., Van Stralen, S. J. D. 1984. Bubble Behaviour During Oxygen and Hydrogen Evolution at Transparent Electrodes in KOH Solution. ElectrochimActa. 29(5): 633–642.
Gabillet, C., Collin, C., Fabre, J. 2002. Experimental Study of Bubble Injection in a Turbulent Boundary Layer. Int. J. Multiphase Flow. 28: 553–578.
Gore, R. A., Crowe, C. T. 1989. Effect of Particle Size on Modulating Turbulent Intensity. Int. J. Multiphase Flow. 15(2): 279–285.
Rensen J., Luther, S., Lohse, D., 2005. The Effect of Bubbles on Developed Turbulence. J. Fluid Mech. 538: 153–187.
Ferrante, A., Elgobashi, S. 2004. On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden With Microbubbles. Inter. Fluid Mech. 503(3): 45–55.
Xu, J., Maxey, M. R, Karniadakis. 2002. Journal of Fluid Mechanics. 468: 271.
Kawamura, T., Kodama, Y. 2002. Numerical Simulation Method to Resolve Interactions Between Bubbles and Turbulence. Int. J. Heat and Fluid Flow. 23: 627–638.
Lage, P. L. C., Esposito, R. O. 1999. Experimental Determination of Bubble Size Distributions in Bubble Column: Prediction of Mean Bubble Diameter and Gas Hold Up. Powder Technology. 101: 142–150.
Ira Leifer., Gerrit de Leeuw., Gerard Kunz., Leo H. Cohen. 2003. Calibrating Optical Bubble Size by the Displaced-mass Method. Chemical Engineering Science. 58: 5211–5216.
Toshiyuki Sanada, Ayaka Sato, MinoriShirota, Masao Watanabe. 2009. Motion and Coalescence of a Pair of Bubbles Rising Side by Side. Chemical Engineering Science. 64: 2659–2671.
Legendre, D., Magnaudet, J., Mougin, G., 2003. Hydrodynamics interactions between two spherical bubbles rising side by side in a viscous liquid. J. Fluid Mech. 497, 133-166.
Kawamura et al. 2004. The effect of the bubble size, dispersion and skin friction reduction. In: Proceeding of 5thsymp. On smart control of turbulence, Tokyo. Pp, 145-151.
Deutsch S., Castano J., 1986. Microbubble skin friction reduction on aaxisymmetrical body. Phys. Fluids 29(35), 90-97.
Kitagawa, A., Hishida, K., Kodama, Y., 2005. Flow structure of microbubble-laden turbulent channel flow by PIV combined with the shadow image technique. Exp. Fluid Flow 21, 5820-588.
Tsai, J.F. and Chen, C.C. (2011). Boundary layer mixture model for a microbubble drag reduction technique. International Scholarly Research Network, ISRN Mechanical Engineering, vol. 2011, article ID 405701.
Mitsubishi Heavy Industries. (2010). MHI Completes Conceptual Design of "MALS-14000CS": Environmentally Friendly Container Vessel to Reduce CO2 Emissions by 35%. October 14, 2010. Retrieved December 12, 2013.
Legner, H.H., 1984. A simple-model for gas bubble drag reduction. Phys. Fluids 27(27), 88-90.
Madavan, N.K., Deutsch, S., and Merkle, C.L. (1985b). Numerical investigation into the mechanisms of microbubble drag reduction. J. Fluids Eng. 107(3), 70-77.
Marie, J.L 1987. Simple analytical formulation for microbubble drag reduction. PhysicoChemical Hydrodynamics 8(2), pp, 213-220.
Mengs J.S.C., and Uhlman, J.S., 1989. Microbubble formulation and splitting in a turbulent boundary layer for turbulence reduction. In advances in Fluids Dynamics, pp, 168-217.
Ferrante, A., Elgobashi, S., 2005. Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundary layer. Inter. Fluid Mech., 543, 93-106.
Kunz, R.F., Gibeling, H.J., Maxey, M.R., Tryggvason, G., Fontaine, A.A., Petrie, H.L., Ceccio, S.L., 2007. Validation of two-fluid Eulerian CFD modelling for microbubble drag reduction across a wide range of Reynolds numbers. J. Fluids Eng. 129, 66-79.
Guin M.M., et al. 1996. Reduction of skin friction by microbubble and its relation with near wall bubble concentration in a channel. J. Mar SciTechnol 1: 241-254.
Kodama, Y., Kakugawa, A., Takahashi, T., Nagaya, S., and Kawamura, T. (2000). Drag reduction of ships by microbubbles. National Maritime Research Institute of Japan.
A.A.Fontaine and S. Deutsch., 1992. Exp.in Fluids, 13,p. 128 .
Lvov, V.S., Pomyalov, A., Procaccia, I., Tiberkevich, V., 2005. Drag reduction by microbubble in turbulent flows: the limit of minute bubbles. Phys. Rev. Lett. 94, 174502.
Kato, H., Miura, K., Yamaguchi, H., Miyanaga, M., 1998. Experimental study on microbubble ejection method for frictional drag reduction. Inter. Mar. Sci. Technol. 3(1), 22-29.
Meng, J.C.S., Uhlman, J.S., 1998. Microbubble formation and splitting in a turbulent boundary layer for turbulent reduction. Proc. Int. Symp. Seawater Drag Reduct., Newport, Rhode Island, pp 341-55.
Kitagawa, A., Hishida, K., and Kodama, Y., 2004. Two phased turbulence structure in a microbbble channel flow. Proc. Of 5th Symp. On Smart Control of Turbulence, University of Tokyo.
Xiang, M., Cheung, S.C.P., Tu, J.Y., Zhang, W.H., 2011. Numerical research on drag reduction by ventilated partial cavity based on two-fluid model. Ocean Engineering 38, 2023-2032.
Xu, J, Maxey, M.R, Karniadakis., 2002. Journal of Fluid Mechanics 468, 271.
Ortiz-Villafuerte, J., Hassan, Y.A., 2006. Investigation of microbubble boundary layer using particle tracking velocimetry. Trans ASME J. Fluids Eng. 128, 507-519.
Gutierrez–Torres, C. C., Hassan, Y. A., Jimenez-Bernal, J. A. 2008. Turbulence Structure Modification and Drag Reduction by Microbubble Injections in a Boundary Layer Channel Flow. Trans ASME J. Fluids Eng. 130: 111304.
Park, Y. S., Sung, H. J. 2005. Influence of Local Ultrasonic Forcing on a Turbulent Boundary Layer. Exp. Fluids. 39(6): 966–976.
Sayyaadi, H. and Nematollahi, M. 2013. Determination of Optimum Injection Flow Rate to Achieve Maximum Micro Bubble Drag Reduction In Ships; An Experimental Approach. ScientiaIranica B. 20(3): 535–541.
Liu Nan-sheng, Cheng Bao-guo. 2011. Direct Numerical Simulations of Turbulent Channel Flows with Consideration of the Buoyancy Effect of the Bubble Phase. Journal of Hydrodynamics. 23(3): 282–288.
Fukagata, K., Iwamoto, K., Kasagi, N. 2002. Contribution of Reynolds Stress Distribution to the Skin Friction in Wall-bounded Flows. Phys. Fluid. 14: L73–L76.
Lee, C., Kim, J., Choi, H. 1998. Suboptimal Control of Turbulent Channel Flow for Drag Reduction. J. Fluid Mech. 369: 81–126.
Watanabe, O. et al. 1998. Measurements of Drag Reduction by Microbubbles Using Very Long Ship Models. J. Soc. Naval Arch. Jpn. 183: 53–63.
Takahashi, T., Kakugawa, A. et al. 2000. Mechanisms and Scale Effect of Skin Friction Reduction by Microbubble. 1st Symp. On Smart Control. 1–9.
Kawamura, T., Fujiwara, A., Takahashi, T., Kato, H., Matsumoto, Y. and Kodama, Y. (n.d.). The Effects of the Bubble Size on the Bubble Dispersion and Skin Friction Reduction. National Maritime Research Institute, Japan.
Jacob, B., Olivieri, A., Miozzi, M., Campana, E. F., Piva, R. 2010. Drag Reduction by Microbubbles in a Turbulent Boundary Layer. Phys. Fluids. 22: 115104.
Lee, S., Sutomo, W., Liu, C. and Loth, E. 2005. Micro-fabricated Electrolytic Micro-bubblers. Internal Journal of Multiphase Flow. 31: 706–722.
Kato, H., Miyanaga, M., Haramoto, Y., Guin, M. M. 1994. Cavitations and Gas-Liquid Flow in Fluid Machinery and Devices ASME. 185–194.
Vigdorovich, I. I. 2015. New Formulation of the Temperature Defect Law for Turbulent Boundary Layers on a Plate. Inter. J. of Heat and Mass Transfer. 84: 653–659.
Foeth, E. J., Enggers, R., and Hourts, I. 2009. Reduction of frictional Resistance by Air Bubble Lubrication. SNAME Annual Meeting, Providence.
PhanAnh Tuan and Pham ThiThanh Huang. 2012. Reduction Ship Skin Friction Resistance by Injection Smaller Bubbles (Draft).
Takahashi, T., et al. 1999. Experimental Skin Friction Reduction by Microbubbles Using a Ship with a Flat Bottom. In: Proceedings of the Turbulence Symposium, Tokyo.
Weinell, C. E., Olsen K. N. et al. 2003. Experimental Study of Drag Resistance Using Laboratory Scale Rotary Set Up. Biofouling; April; 19 Suppl: 45–51.
Haosheng C., Darong, C., and Yongjian Li. 2005. Investigation on Effect Roughness Pattern to Drag Force Reduction Using Rotary Rheometer. J. Tribol. 128(1):131–138.
Mingjun Pang., Jinjia Wei. 2013. Experimental Investigation on the Turbulence Channel Flow Laden With Small Bubbles by PIV. Chemical Engineering Science. 94: 302–315.
Jung, W. J., Mangiavacchi, N., Akhavan, R. 1992. Suppression of Turbulence in Wall-bounded Flows by High Frequency Spanwise Oscillations. Phys. Fluids A. 4(8): 1605–1607.
Baron, A., Quadrio, M. 1996. Turbulent Drag Reduction by Spanwise Wall Oscillations. Appl. Sci. Res. 55: 311–326.
Laadhari, F., Skandaji, L., Morel, R. 1994. Turbulence Reduction in a Boundary Layer by a Local Spanwise Oscillating Surface. Phys. Fluids A. 6(10): 3218–3220.
Choi, K.-S., DeBisschop, J.-R., Clayton, B. R. 1998. Turbulent Boundary Layer Control by Means of Spanwise-Wall Oscillation. AIAA J. 36(7). 1157–1163.
Yang, X., Thomas, N. H., Guo, L. J., Hou, Y. 2002. Two-way Coupled Bubble Laden Mixing Layer.
Sandra Kentish, Judy Lee, Malcolm Davidson, MuthupandianAshokkumar. 2006. The Dissolution of a Stationary Spherical Bubble Beneath a Flat Plate. Chemical Engineering Science. 61: 7697–7705.
Epstein, P. S., Plesset, M. S. 1950. On the Stability of Gas Bubbles in Liquid-Gas Solutions. Journal of Chemical Physics. 18(11): 1505–1509.
Krieger, I. M., Mulholland, G. W., Dickey, C. S. 1967. Diffusion Coefficients for Gases in Liquids From Rates of Solution of Small Gas Bubbles. Journal of Physical Chemistry. 71(4): 1123–1129.
Subramanian, R. S., Weinberg, M. C. 1981. Asymptotic Expansions for the Description of Gas Bubble Dissolution and Growth. A.I.Ch.E. Journal. 27(5): 739–748.
Park, S. H., Weng, J. G., Tien, C. L. 2001. A Molecular Dynamics Study on Surface Tension of Microbubbles. Inter. J. of Heat and Mass Transfer. 44: 1849–1856.
MichaWolfshtein. 2009. Some Comments on the Turbulence Modelling. Inter. J. of Heat and Mass Transfer. 52: 4103–4107.
Shirnoyama, N. 2002. Reduction of frictional resistance of ships by air-sheet method. Symposiumon the Turbulent Flow Research and Its Applications. JTTC Symposium, SNAJ, Japan. 186–209.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.