Review of Brain Lesion Detection and Classification using Neuroimaging Analysis Techniques

Authors

  • Norhashimah Mohd Saad Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, 76100 Hang Tuah Jaya, Melaka, Malaysia
  • Syed Abdul Rahman Syed Abu Bakar Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Sobri Muda Radiology Department, Universiti Kebangsaan Malaysia Medical Centre, 56100 Cheras, Kuala Lumpur, Malaysia
  • Musa Mohd Mokji Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.4670

Keywords:

Brain lesion, medical imaging, computer-aided diagnosis, segmentation, classification

Abstract

Neuroimaging plays an important role in the diagnosis brain lesions such as tumors, strokes and infections. Within this context, magnetic resonance diffusion-weighted imaging (DWI) is clinically recommended in the differential diagnosis of several brain lesions by providing detailed information regarding lesion based on the diffusion of water molecules. Conventionally, the differential diagnosis of brain lesions is performed visually by professional neuroradiologists during a highly subjective, time-consuming process. In response, computer-aided detection/diagnosis (CAD) has become a major topic of research and, in light of novel image processing techniques, has become a widespread, possibly indispensable tool for accurate diagnosis and reduce the time required. The objective of this review is to show the recent published techniques and state-of-the-art neuroimaging techniques for the human brain lesions. The review covers neuroimaging modalities, magnetic resonance imaging, DWI and analysis techniques for CAD in detecting and classifying of brain lesion. 

References

N. A. Campbell, J. B. Reece, M. R. Taylor, E. J. Simon, and J. Dickey. 2009. Biology: Concepts & Connections. Sixth ed. vol. 3. Pearson/Benjamin Cummings.

R. S. Snell. 2010. Clinical Neuroanatomy. 7th ed. Lippincott Williams & Wilkins.

M. Rubin, J. E. Safdieh and F. H. Netter. 2007. Netter's Concise Neuroanatomy. Saunders Elsevier.

W. L. Nowinski. 2011. Introduction to Brain Anatomy. In Biomechanics of the Brain. K. Miller, Ed. ed: Springer Science+Business Media. 5–40.

Ministry-of-Health. 2012. Health Facts 2012. Ministry Of Health Malaysia.

Siemens. 2010. Diffusion Weighted MRI of the Brain, in MAGNETOM Maestro Class, ed. Siemens Medical Germany: Siemens Medical Solutions That Help.

American-Cancer-Society. 2009. Cancer Facts & Figures 2009. Available: http://www.cancer.org/research/cancerfactsstatistics/ cancerfactsfigures2009/index.

American-Cancer-Society. 2014. Cancer Facts & Figures 2014. Available: http://www.cancer.org/research/cancerfactsstatistics/ cancerfactsfigures2014/index.

J. T. Voyvodic. 2005. Basic Physical Principles of MRI: Brain Imaging and Analysis Center. Duke University Medical Center, Durham, North Carolina, USA.

P. E. Kim and C. S. Zee. 2007. Imaging of the Cerebrum. Neurosurgery. 61.

J. G. Webster and J. Wiley. 1999. Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Inc.

C. Guy and D. Ffytche. 2005. An Introduction to the Principles of Medical Imaging: World Scientific.

H. Bhadauria, A. Singh and M. Dewal. 2013. An Integrated Method for Hemorrhage Segmentation from Brain CT Imaging. Computers & Electrical Engineering. 39: 1527–1536.

P. C. Lauterbur, 1973. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature. 242: 190–191.

P. Mansfield. 1977. Multi-planar Image Formation using NMR Spin Echoes. Journal of Physics C: Solid State Physics. 10: L55.

Siemens, 2010. Magnets, Spins, and Resonances: An Introduction to the Basics of Magnetic Resonance. In Siemens Medical Solutions That Help.

E. M. Sweeney, R. T. Shinohara, N. Shiee, F. J. Mateen, A. A. Chudgar and J. L. Cuzzocreo. 2013. OASIS is Automated Statistical Inference for Segmentation, with applications to Multiple Sclerosis Lesion Segmentation in MRI. NeuroImage: Clinical. 2: 402–413.

S. Cha, 2006. Update on Brain Tumor Imaging: From Anatomy to Physiology. American Journal of Neuroradiology. 27: 475–487.

R. T. Ullrich, L. W. Kracht and A. H. Jacobs. 2008. Neuroimaging in Patients with Gliomas, Seminars in Neurology. 484–494.

O. Kastrup, I. Wanke and M. Maschke, 2008. Neuroimaging of Infections of the Central Nervous System, Seminars in Neurology. 511–522.

L. Hsu, 2005. MR Imaging of the Central Nervous System. Minimally Invasive Neurosurgery. ed: Humana Press Inc, Totowa, NJ.

E.-S. A. El-Dahshan, H. M. Mohsen, K. Revett and A.-B. M. Salem. 2014. Computer-Aided Diagnosis of Human Brain Tumor Through MRI: A Survey and a New Algorithm. Expert Systems with Applications. 41: 5526–5545.

R. Bitar. 2006. MR Pulse Sequences: What Every Radiologist Wants to Know but Is Afraid to Ask. RadioGraphics. 26: 513–537.

M. B. M. Ariffanan, 2009. Medical Image Classification and Symptoms Detection using Neuro Fuzzy, Master Thesis, Universiti Teknologi Malaysia.

M. Winntermark, M. D. Wirt, P. Mukherjee, G. Zaharchuk, E. Barbier, W. P. Dillon. 2008. Brain, Head and Neck. Magnetic Resonance Tomography. M. F. Reiser, W. Semmler, and H. Hricak, Eds. ed: Springer Berlin Heidelberg. 169–533.

J. M. Provenzale, S. Mukundan and D. P. Barboriak. 2006. Diffusion-weighted and Perfusion MR Imaging for Brain Tumor Characterization and Assessment of Treatment Response 1. Radiology. 239: 632–649.

Y. Han, E. Li, J. Tian, J. Chen, H. Wang and J. Dai, 2006. The Application of diffusion-and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis and Therapy of Acute Cerebral Infarction, International Journal of Biomedical Imaging.

N. Rollin, J. Guyotat, N. Streichenberger, J. Honnorat, V.-A. T. Minh, and F. Cotton. 2006. Clinical Relevance of Diffusion and Perfusion Magnetic Resonance Imaging in Assessing Intra-Axial Brain Tumors. Neuroradiology. 48: 150–159.

S. J. Holdsworth and R. Bammer. 2008. Magnetic Resonance Imaging Techniques: fMRI, DWI, and PWI, Seminars in Neurology. 395.

E. Stejskal and J. Tanner. 1965. Spin Diffusion Measurements: Spin Echoes in the Presence of a Timeâ€dependent Field Gradient. The Journal of Chemical Physics. 42: 288–292.

T. Moritani, S. Ekholm and P.-L. Westesson. 2005. Diffusion-Weighted MR Imaging of the Brain.

D. Weishaupt, V. D. Köchli and B. Marincek. 2006. 7 Basic Pulse Sequences. In How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging. 2nd Edition ed: Springer Berlin Heidelberg. 47–56.

P. W. Schaefer, P. E. Grant and R. G. Gonzalez. 2000. Diffusion-Weighted MR Imaging of the Brain 1. Radiology. 217: 331–345.

D.-M. Koh and D. J. Collins. 2007. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. American Journal of Roentgenology. 188: 1622–1635.

D. Koh and A. Padhani, 2014. Diffusion-Weighted MRI: a New Functional Clinical Technique for Tumour Imaging.

J. Graessner. 2011. Frequently Asked Questions: Diffusion-Weighted Imaging (DWI). How I do it MAGNETOM FLASH. 84–87.

S. Mujumdar. 2013. Detection and Segmentation of Stroke Lesions from Diffusion Weighted MRI Data of the Brain, International Institute of Information Technology Hyderabad.

L. Nadal Desbarats, S. Herlidou, G. de Marco, C. Gondry-Jouet, D. Le Gars, H. Deramond. 2003. Differential MRI Diagnosis between Brain Abscesses and Necrotic or Cystic Brain Tumors using the Apparent Diffusion Coefficient and Normalized Diffusion-Weighted Images. Magnetic Resonance Imaging. 21: 645–650.

P. H. Lai, J. T. Ho, W. L. Chen, S. S. Hsu, J. S. Wang and H. B. Pan. 2002. Brain Abscess and Necrotic Brain Tumor: Discrimination with Proton MR Spectroscopy and Diffusion-weighted Imaging. American Journal of Neuroradiology. 23: 1369–1377.

S. K. Mukherji, T. L. Chenevert and M. Castillo. 2002. State of the Art: Diffusion-Weighted Magnetic Resonance Imaging. Journal of Neuro-Ophtalmology. 22.

M. D. Hammer and L. R. Wechsler. 2008. Neuroimaging in Ischemia and Infarction, Seminars in Neurology. 446–452.

M. Saad, S. Abu-Bakar, S. Muda, M. Mokji and A. Abdullah. 2012. Fully Automated Region Growing Segmentation of Brain Lesion in Diffusion-Weighted MRI. IAENG International Journal of Computer Science. 39: 155–164.

A. Srinivasan, M. Goyal, F. A. Azri, and C. Lum, 2006. State-of-the-Art Imaging of Acute Stroke. RadioGraphics. 26: 75–95.

N. Hema Rajini and R. Bhavani. 2013. Computer Aided Detection of Ischemic Stroke using Segmentation and Texture Features, Measurement. 46: 1865–1874.

F.-h. Tang, D. K. Ng, and D. H. Chow. 2011. An Image Feature Approach for Computer-Aided Detection of Ischemic Stroke. Computers in Biology and Medicine. 41: 529–536.

J. A. Chalela, C. S. Kidwell, L. M. Nentwich, M. Luby, J. A. Butman, A. M. Demchuk. 2007. Magnetic Resonance Imaging and Computed Tomography in Emergency Assessment of Patients with Suspected Acute Stroke: A Prospective Comparison. The Lancet. 369: 293–298.

J. J. Fenton, S. H. Taplin, P. A. Carney, L. Abraham, E. A. Sickles, C. D'Orsi, 2007. Influence of Computer-aided Detection on Performance of Screening Mammography. New England Journal of Medicine. 356: 1399–1409.

H. Kobatake. 2007. Future CAD in Multi-Dimensional Medical Images:–Project on Multi-Organ, Multi-Disease CAD System, Computerized Medical Imaging and Graphics. 31: 258–266.

H. Fujita, Y. Uchiyama, T. Nakagawa, D. Fukuoka, Y. Hatanaka, T. Hara. 2008. Computer-Aided Diagnosis: The Emerging of Three CAD Systems Induced by Japanese Health Care Needs. Computer Methods and Programs in Biomedicine. 92: 238–248.

H. Fujita, J. You, Q. Li, H. Arimura, R. Tanaka, S. Sanada. 2010. State-of-the-Art of Computer-Aided Detection/Diagnosis (CAD), Medical Biometrics. Springer. 296–305.

X. Yang, D. J. Blezek, L. T. Cheng, W. J. Ryan, D. F. Kallmes and B. J. Erickson. 2011. Computer-Aided Detection of Intracranial Aneurysms in MR Angiography. Journal of Digital Imaging. 24: 86–95.

M. Termenon, A. Besga, J. Echeveste, A. Gonzalez-Pinto and M. Graña. 2011. Alzheimer Disease Classification on Diffusion Weighted Imaging Features. New Challenges on Bioinspired Applications. ed: Springer. 120–127.

Y. Zhang. 2012. MRI Texture Analysis in Multiple Sclerosis. Journal of Biomedical Imaging. 2.

B. R. Menze, M. Van and K. Leemput. 2014. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging.

M. A. Balafar, A. R. Ramli, M. I. Saripan and S. Mashohor. 2010. Review of Brain MRI Image Segmentation Methods. Artificial Intelligence Review. 33: 261–274.

S. Loncaric, A. P. Dhawan, D. Cosic, D. Kovacevic, J. Broderick and T. Brott. 1999. Quantitative Intracerebral Brain Hemorrhage Analysis. Medical Imaging. 886–894.

W. M. D. W. Zaki, M. F. A. Fauzi, R. Besar and W. S. H. M. W. Ahmad. 2011. Abnormalities Detection in Serial Computed Tomography Brain Images using Multi-Level Segmentation Approach. Multimedia Tools and Applications. 54: 321–340.

T. H. Lee, M. F. A. Fauzi, R. Komiya and S. C. Haw. 2008. Unsupervised Abnormalities Extraction and Brain Segmentation, International Conference on Intelligent System and Knowledge Engineering. 1185–1190.

T. Chan. 2007. Computer Aided Detection of Small Acute Intracranial Hemorrhage on Computer Tomography of Brain. Computerized Medical Imaging and Graphics. 31: 285–298.

A. Bardera, I. Boada, M. Feixas, S. Remollo, G. Blasco and Y. Silva, 2009. Semi-Automated Method for Brain Hematoma and Edema Quantification using Computed Tomography. Computerized Medical Imaging and Graphics. 33: 304–311.

M. Matesin, S. Loncaric and D. Petravic. 2001. A Rule-based Approach to Stroke Lesion Analysis from CT Brain Images, Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. 219–223.

C. C. Liao, F. Xiao, J.-M. Wong, and I. Chiang. 2010. Computer-aided Diagnosis of Intracranial Hematoma With Brain Deformation On Computed Tomography. Computerized Medical Imaging and Graphics. 34: 563–571.

Y. Lee, N. Takahashi, D.-Y. Tsai and H. Fujita, 2006. Detectability Improvement of Early Sign of Acute Stroke on Brain CT Images using an Adaptive Partial Smoothing Filter, Medical Imaging, 61446Q-61446Q-8.

P. Bhat and M. Singh. 2012. Classification of Stroke using Texture Analysis on CT Images. International Journal of Soft Computing and Engineering (IJSCE). 2: 527–530.

A. Ušinskas. 2004. Ischemic Stroke Segmentation on CT Images using Joint Features. Informatica. 15: 283–290.

M. Chawla, S. Sharma, J. Sivaswamy, and L. Kishore. 2009. A Method for Automatic Detection and Classification of Stroke from Brain CT images, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 3581–3584.

A. Przelaskowski, K. Sklinda, P. Bargieł, J. Walecki, M. Biesiadko-Matuszewska and M. Kazubek. 2007. Improved Early Stroke Detection: Wavelet-based Perception Enhancement of Computerized Tomography Exams. Computers in Biology and Medicine. 37: 524–533.

A. Shalikar, M. R. Ashouri, and M. H. N. Shahraki, 2014. A CAD System for Automatic Classification of Brain Strokes in CT Images. International Journal of Mechatronics, Electrical and Computer Technology. 4.

W. L. Nowinski, G. Qian, K. B. Prakash, I. Volkau, W. K. Leong and S. Huang. 2008. Stroke Suite: CAD Systems for Acute Ischemic Stroke, Hemorrhagic Stroke, and Stroke in ER, Medical Imaging and Informatics. Springer. 377–386.

S. Shen, A. J. Szameitat, and A. Sterr, 2010. An Improved Lesion Detection Approach Based on Similarity Measurement Between Fuzzy Intensity Segmentation and Spatial Probability Maps. Magnetic Resonance Imaging. 28: 245–254.

S. Shen, A. J. Szameitat, and A. Sterr, 2008. Detection of Infarct Lesions from Single MRI Modality using Inconsistency between Voxel Intensity and Spatial Location—A 3-D Automatic Approach. IEEE Transactions on Information Technology in Biomedicine. 12: 532–540.

Dec 2014. BraTumIA (Brain Tumor Image Analysis) Software. Available: http://www.istb.unibe.ch/content/research/medical_image_analysis/software/index_eng.html.

N. Porz, S. Bauer, A. Pica, P. Schucht, J. Beck, R. K. Verma, 2014. Multi-Modal Glioblastoma Segmentation: Man versus Machine, PloS one. 9: e96873.

MICCAI Brain Tumor Segmentation (BRATS) challenge. Available:http://www2.imm.dtu.dk/projects/BRATS2012/.

P. Georgiadis, D. Cavouras, I. Kalatzis, D. Glotsos, E. Athanasiadis, S. Kostopoulos, 2009. Enhancing the Discrimination Accuracy between Metastases, Gliomas and Meningiomas on Brain MRI by Volumetric Textural Features and Ensemble Pattern Recognition Methods, Magnetic Resonance Imaging. 27: 120–130.

Q.-u. Ain, I. Mehmood, S. M. Naqi, and M. A. Jaffar. 2010. Bayesian Classification using DCT Features for Brain Tumor Detection. Knowledge-Based and Intelligent Information and Engineering Systems. Springer. 340–349.

E.-S. A. El-Dahshan, T. Hosny, and A.-B. M. Salem, 2010. Hybrid Intelligent Techniques for MRI Brain Images Classification. Digital Signal Processing. 20: 433–441.

H. Khotanlou, O. Colliot, J. Atif, and I. Bloch. 2009. 3D Brain Tumor Segmentation in MRI using Fuzzy Classification, Symmetry Analysis and Spatially Constrained Deformable Models. Fuzzy Sets and Systems. 160: 1457–1473.

M. Fazel Zarandi, M. Zarinbal, and M. Izadi, 2011. Systematic Image Processing for Diagnosing Brain Tumors: A Type-II Fuzzy Expert System Approach. Applied Soft Computing. 11: 285–294.

M. Barnathan, J. Zhang, E. Miranda, V. Megalooikonomou, S. Faro and H. Hensley. 2008. A Texture-based Methodology for Identifying Tissue Type in Magnetic Resonance Images. IEEE International Symposium in Biomedical Imaging: From Nano to Macro. 464–467.

E. I. Zacharaki, S. Wang, S. Chawla, D. S. Yoo, R. Wolf and E. R. Melhem. 2009. MRI-based Classification of Brain Tumor Type and Grade using SVM-RFE, IEEE International Symposium in Biomedical Imaging: From Nano to Macro. 1035–1038.

G.-C. Lin, W.-J. Wang, C.-C. Kang, and C.-M. Wang. 2012. Multispectral MR Images Segmentation Based on Fuzzy Knowledge and Modified Seeded Region Growing. Magnetic Resonance Imaging. 30: 230–246.

R. Dubey, M. Hanmandlu and S. Gupta, 2009. Region Growing for MRI Brain Tumor Volume Analysis. Indian Journal of Science and Technology. 2: 26–31.

S. Ibrahim, N. E. A. Khalid, and M. Manaf. 2010. Seed-based Region Growing (SBRG) vs Adaptive Network-based Inference System (ANFIS) vs Fuzzy C-Means (FCM): Brain Abnormalities Segmentation. International Journal of Electrical and Computer Engineering. 5: 94–104.

P. Wang and H. Wang. 2008. A Modified FCM Algorithm for MRI Brain Image Segmentation. Future BioMedical Information Engineering, 2008. FBIE'08. 26–29.

K. Thapaliya, J.-Y. Pyun, C.-S. Park, and G.-R. Kwon. 2013. Level Set Method with Automatic Selective Local Statistics for Brain Tumor Segmentation in MR Images. Computerized Medical Imaging and Graphics. 37: 522–537.

D. Rivest-Hénault and M. Cheriet. 2011. Unsupervised MRI Segmentation of Brain Tissues using a Local Linear Model and Level Set. Magnetic Resonance Imaging. 29: 243–259.

A. L. Martel, S. J. Allder, G. S. Delay, P. S. Morgan, and A. R. Moody. 1999. Measurement of Infarct Volume in Stroke Patients using Adaptive Segmentation of Diffusion Weighted MR Images. Medical Image Computing and Computer-Assisted Intervention–MICCAI’99. 22–31.

J. D. Lee, T. C. Chang, C. H. Huang, S. J. Wu, and C. J. Chen. 2004. Computer-aided Diagnosis System for Acute Stroke Using Diffusion Weighted Images with Volume Calculation, 26th Annual International Conference of the IEEE EMBS, San Fransisco, USA. 1529–1532.

K. Bhanu Prakash, V. Gupta, and W. L. Nowinski. 2010. Segmenting Infarct from Diffusion-Weighted Imaging Volume, United States Patent.

N. Hevia-Montiel, J. R. Jimenez-Alaniz, V. Medina-Banuelos, O. Yanez-Suarez, C. Rosso and Y. Samson. 2007. Robust Nonparametric Segmentation of Infarct Lesion from Diffusion-Weighted MR Images, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2102–2105.

S. Saraswathy, S. Sharma, D. Shanbhag, U. Patil, and R. Mullick. 2009. Automatic Identification and Segmentation of Infarct Lesions from Diffusion Weighted MR Images and ADC Maps. International Society for Magnetic Resonance in Medicine.

S. Z. Mahmoodabadi, J. Alirezaie, P. Babyn, A. Kassner, and E. Widjaja. 2011. Wavelets and Fuzzy Relational Classifiers: A Novel Diffusion-weighted Image Analysis System for Pediatric Metabolic Brain Diseases, Computer Methods and Programs in Biomedicine, 103: 74–86.

Y. Rathi, J. Malcolm, O. Michailovich, J. Goldstein, L. Seidman and R. W. McCarley. 2010. Biomarkers for Identifying First-episode Schizophrenia Patients using Diffusion Weighted Imaging. Medical Image Computing and Computer-Assisted Intervention. Springer. 657–665.

W. P. Santos, F. M. Assis, R. E. Souza, P. B. S. Filho, and F. B. L. Neto. 2009. Dialectical Multispectral Classification of Diffusion-weighted Magnetic Resonance Images as an Alternative to Apparent Diffusion Coefficients Maps to Perform Anatomical Analysis. Computerized Medical Imaging and Graphics. 33: 442–460.

C.-F. Lu, P.-S. Wang, B.-W. Soong, Y.C. Chou, H.-C. Li, and Y.-T. Wu, 2009. Multi-tissue Classification of Diffusion-Weighted Brain Images in Multiple System Atrophy Using Expectation Maximization Algorithm Initialized by Hierarchical Clustering, 13th International Conference on Biomedical Engineering. 722–725.

H. Li, T. Liu, G. Young, L. Guo, and S. T. Wong. 2006. Brain Tissue Segmentation Based on DWI/DTI Data, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro. 57–60.

A. Hadjiprocopis, W. Rashid, and P. S. Tofts, 2005. Unbiased Segmentation of Diffusion-weighted Magnetic Resonance Images of the Brain using Iterative Clustering. Magnetic Resonance Imaging. 23: 877–885.

J. Hwang, Y. Han, and H. Park. 2007. Segmentation of Brain Parenchyma using Bilateral Filtering and Region Growing, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 6263–6266.

K. Bhanu Prakash, V. Gupta, M. Bilello, N. J. Beauchamp, and W. L. Nowinski. 2006. Identification, Segmentation, and Image Property Study of Acute Infarcts in Diffusion-weighted Images by using a Probabilistic Neural Network and Adaptive Gaussian Mixture Model. Academic Radiology. 13: 1474–1484.

Downloads

Published

2015-05-28

How to Cite

Review of Brain Lesion Detection and Classification using Neuroimaging Analysis Techniques. (2015). Jurnal Teknologi (Sciences & Engineering), 74(6). https://doi.org/10.11113/jt.v74.4670