ALL-OPTICAL HYSTERESIS SWITCHING USING MOBIUS CONFIGURATION MICRORING RESONATOR CIRCUIT

Authors

  • Ahmad Fakhrurrazi Ahmad Noorden Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Azam Mohamad Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mahdi Bahadoran Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Kashif Chaudhary Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. S. Aziz Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Arif Jalil Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Jalil Ali Laser Centre, Ibnu Sina ISIR, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Preecha Yupapin Advanced Studies Center, Faculty of Science King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

DOI:

https://doi.org/10.11113/jt.v74.4718

Keywords:

Add-drop mobius (ADM) ring resonator, transfer matrix analysis, optical bistability, hysteresis loop

Abstract

The novel twisted ring resonator called add-drop Mobius microring resonator is introduced and modelled with the analytical solution of transfer matrix methods for the generation of optical bistability. Simulated results show that, the add-drop Mobius configuration provides greater phase shift due to the longer length of propagation per roundtrip than add-drop filter configuration. In add-drop Mobius system, drop port generated the optical bistable hysteresis loop with 19.25 mW output switching power and through port generated lower switching power as 5.55 mW. The drop port of the system is found as the suitable port for the operating the all-optical hysteresis switching.

References

Y. A. Sharaby, A. Joshi, and S. S. Hassan. 2010. Physics Letters A. 37421: 2188-2194.

E. Abraham and S. Smith. 1982. Reports on Progress in Physics. 458: 815.

Y. Tanaka, H. Kawashima, N. Ikeda, Y. Sugimoto, H. Kuwatsuka, T. Hasama, and H. Ishikawa. 2006. Ieee Photonics Technology Letters. 1817-20: 1996-1998.

M. Pollinger and A. Rauschenbeutel. 2010. Optics Express. 1817: 17764-17775.

J. Sakaguchi, T. Katayama, and H. Kawaguchi. 2010. Ieee Journal of Quantum Electronics. 4611: 1526-1534.

A.R. Cowan and J.F. Young. 2005. Semiconductor Science and Technology. 209: R41-R56.

I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal. 2010. Optics Letters. 351: 55-57.

A. L. Steele. 2004. Optics Communications. 2361-3: 209-218.

P. P. Yupapin, P. Saeung, and W. Suwancharoen. 2007. Journal of Nonlinear Optical Physics & Materials. 161: 111-118.

Tsilipakos, O. and E.E. Kriezis. 2014. Optical Bistability With Hybrid Silicon-Plasmonic Disk Resonators. Journal of the Optical Society of America B-Optical Physics. 31(7): 1698-1705.

M. Bahadoran, J. Ali, and P.P. Yupapin, 2013. Applied Optics. 5212: 2866-2873.

M. Bahadoran, J. Ali, and P. P. Yupapin. 2013. Ieee Photonics Technology Letters. 2515: 1470-1473.

J. M. Pond, S. J. Liu, and N. Newman. 2001. Ieee Transactions on Microwave Theory and Techniques. 4912: 2363-2368.

S. Li, L. Ma, V. Fomin, S. Böttner, M. Jorgensen, and O. Schmidt. 2013. arXiv preprint arXiv:1311.7158.

Chamorro-Posada, P., R. Gomez-Alcala, and F. J. Fraile-Pelaez. 2014. Study of Optimal All-Pass Microring Resonator Delay Lines With a Genetic Algorithm. Journal of Lightwave Technology. 32(8): 1477-1481.

P.P. Yupapin and W. Suwancharoen. 2007. Optics Communications. 2802: 343-350.

Aziz M. S, Jukgoljan B, Daud S, Tan TS, Ali J, Yupapin PP. 2013. Molecular Filter On-chip Design for Drug Targeting Use. Artif Cells Nanomed Biotechnol. 41(3):178-83.

H. S. Lee, C. H. Choi, B. H. O, D. G. Park, B. G. Kang, S. H. Kim, S. G. Lee, and E. H. Lee. 2004. Ieee Photonics Technology Letters. 164: 1086-1088.

G. P. Agrawal. 2000. Nonlinear Fiber Optics. Springer.

M. Bahadoran, A. F. A. Noorden, K. Chaudhary, F. S. Mohajer, M. S. Aziz, S. Hashim, J. Ali, and P. Yupapin. 2014. Sensors. 147: 12885-12899.

Y. S. Kivshar and G. Agrawal. 2003. Optical Solitons: from Fibers to Photonic Crystals. Academic Press.

R. W. Boyd. 2003. Nonlinear Optics. 3rd ed. Academic Press.

M. S. Aziz, S. Daud, M. Bahadoran, J. Ali, and P. P. Yupapin. 2012. Journal of Nonlinear Optical Physics & Materials. 214.

S. Lynch. 2004. Dynamical Systems with Applications using MATLAB®. Birkhäuser Boston.

A. Afroozeh, M. S. Aziz, M. A. Jalil, J. Ali, and P. P. Yupapin. 2011. 2nd International Science, Social Science, Engineering and Energy Conference 2010 (I-Seec 2010). 8: 412-416.

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude. 2007. Optics Express. 1510: 5976-5990.

H. Yates, D. Whitehead, M. Nolan, M. Pemble, E. Palacios-Lidón, S. Rubio, F. Meseguer, and C. López. Growth and Formation of Inverse GaP and InP opals. in Electrochemical Society Proceedings. 2003. Electrochemical Society.

R. Palmer, L. Alloatti, D. Korn, W. Heni, P.C. Schindler, J. Bolten, M. Karl, M. Waldow, T. Wahlbrink, W. Freude, C. Koos, and J. Leuthold. 2013. Ieee Photonics Journal. 51.

D. N. Maywar, G. P. Agrawal, and Y. Nakano. 2001. Journal of the Optical Society of America B-Optical Physics. 187: 1003-1013.

S. J. Cooke and J. M. Pond. 2001. Microwave and Optical Technology Letters. 311: 6-9.

Downloads

Published

2015-06-03

Issue

Section

Science and Engineering

How to Cite

ALL-OPTICAL HYSTERESIS SWITCHING USING MOBIUS CONFIGURATION MICRORING RESONATOR CIRCUIT. (2015). Jurnal Teknologi, 74(8). https://doi.org/10.11113/jt.v74.4718