THE POTENTIAL OF OPTICAL TWEEZER (OT) FOR VISCOELASTIVITY MEASUREMENT OF NANOCELLULOSE SOLUTION
DOI:
https://doi.org/10.11113/jt.v74.4722Keywords:
Optical tweezer, nanocellulose, viscoelasticity, microrheology, optical trappingAbstract
In this paper, we review the recent applications of optical tweezer (OT) in studying the microrheology of variety of polymeric solution. Our aim is to expose optical tweezer research to the public and newcomer. This paper highlights and summarizes the advantages of optical tweezer as compared with the conventional method, introduces the benefit of nanocellulose and also presents an overview of the potential in the measurement of nanocellulose solution’s viscoelasticity by using optical trapping method.
References
T. M. Squires and T. G. Mason. 2010. Fluid Mechanics of Microrheology. Annual Review of Fluid Mechanics. 42: 413-438.
A. Ashkin and J. M. Dziedzic. 1987. Optical Trapping and Manipulation of Viruses and Bacteria. Science. 235: 1517-1520.
S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin. 1985. Three-dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett. 55: 48-51.
K. Dholakia, G. Spalding, and M. MacDonald. 2002. Optical Tweezers: The Next Generation. Physics World 15: 31-35.
K. C. Neuman and A. Nagy. 2008. Single-molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy. Nat. Methods. 5: 491-505.
T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop. 2007. Physics of Optical Tweezers. Methods in Cell Biology. 82: 207-236.
J. Sleep, D. Wilson, R. Simmons, and W. Gratzer. 1999. Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study. Biophys. J., 77: 3085-3095.
T. Strick, J. F. Allemand, V. Croquette, and D. Bensimon. 2000. Twisting and Stretching Single DNA Molecules. Progress in Biophysics and Molecular Biology. 74: 115-140.
T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette. 1996. The Elasticity of a Single Supercoiled DNA Molecule. Science. 271: 1835-1837.
G. Charvin, T. R. Strick, D. Bensimon, and V. Croquette. 2005. Tracking Topoisomerase Activity at the Single-Molecule Level. Annu. Rev. Biophys. Biomol. Struct. 34: 201-219.
J. Gore, Z. Bryant, M. D. Stone, M. Nöllmann, N. R. Cozzarelli, and C. Bustamante. 2006. Mechanochemical Analysis of DNA Gyrase Using Rotor Bead Tracking. Nature. 439: 100-104.
G. Binnig, C. Quate, and C. Gerber. 1986. Atomic Force Microscope. Phys. Rev. Lett. 56: 930-933.
G. U. Lee, L. A. Chrisey, and R. J. Colton. 1994. Direct Measurement of the Forces Between Complementary Strands of DNA. Science. 266: 771-773.
G. Binnig, N. Garcia, and H. Rohrer. 1985. Conductivity Sensitivity of Inelastic Scanning Tunneling Microscopy. Phys. Rev. B. 32: 1336-1338.
G. Siqueira, J. Bras, and A. Dufresne. 2010. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers. 2: 728-765.
L. Heux, E. Dinand, and M. R. Vignon. 1999. Structural Aspects in Ultrathin Cellulose Microfibrils Followed by 13C CP-MAS NMR. Carbohydr. Polym. 40: 115-124.
M. Ioelovich. 2008. Cellulose as a Nanostructured Polymer: A Short Review. BioResources. 3: 1403-1418.
M. a. Hubbe, O. J. Rojas, L. a. Lucia, and M. Sain. Cellulosic Nanocomposites: A Review. BioResources. 3: 929-980.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.