THE POTENTIAL OF OPTICAL TWEEZER (OT) FOR VISCOELASTIVITY MEASUREMENT OF NANOCELLULOSE SOLUTION

Authors

  • Wan Nor Suhaila Wan Aziz Department of Physics, Faculty Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia
  • Shahrul Kadri Ayop Department of Physics, Faculty Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia
  • Sugeng Riyanto Department of Physics, Faculty Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia

DOI:

https://doi.org/10.11113/jt.v74.4722

Keywords:

Optical tweezer, nanocellulose, viscoelasticity, microrheology, optical trapping

Abstract

In this paper, we review the recent applications of optical tweezer (OT) in studying the microrheology of variety of polymeric solution. Our aim is to expose optical tweezer research to the public and newcomer. This paper highlights and summarizes the advantages of optical tweezer as compared with the conventional method, introduces the benefit of nanocellulose and also presents an overview of the potential in the measurement of nanocellulose solution’s viscoelasticity by using optical trapping method.

References

T. M. Squires and T. G. Mason. 2010. Fluid Mechanics of Microrheology. Annual Review of Fluid Mechanics. 42: 413-438.

A. Ashkin and J. M. Dziedzic. 1987. Optical Trapping and Manipulation of Viruses and Bacteria. Science. 235: 1517-1520.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin. 1985. Three-dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure. Phys. Rev. Lett. 55: 48-51.

K. Dholakia, G. Spalding, and M. MacDonald. 2002. Optical Tweezers: The Next Generation. Physics World 15: 31-35.

K. C. Neuman and A. Nagy. 2008. Single-molecule Force Spectroscopy: Optical Tweezers, Magnetic Tweezers and Atomic Force Microscopy. Nat. Methods. 5: 491-505.

T. A. Nieminen, G. Knöner, N. R. Heckenberg, and H. Rubinsztein-Dunlop. 2007. Physics of Optical Tweezers. Methods in Cell Biology. 82: 207-236.

J. Sleep, D. Wilson, R. Simmons, and W. Gratzer. 1999. Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study. Biophys. J., 77: 3085-3095.

T. Strick, J. F. Allemand, V. Croquette, and D. Bensimon. 2000. Twisting and Stretching Single DNA Molecules. Progress in Biophysics and Molecular Biology. 74: 115-140.

T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette. 1996. The Elasticity of a Single Supercoiled DNA Molecule. Science. 271: 1835-1837.

G. Charvin, T. R. Strick, D. Bensimon, and V. Croquette. 2005. Tracking Topoisomerase Activity at the Single-Molecule Level. Annu. Rev. Biophys. Biomol. Struct. 34: 201-219.

J. Gore, Z. Bryant, M. D. Stone, M. Nöllmann, N. R. Cozzarelli, and C. Bustamante. 2006. Mechanochemical Analysis of DNA Gyrase Using Rotor Bead Tracking. Nature. 439: 100-104.

G. Binnig, C. Quate, and C. Gerber. 1986. Atomic Force Microscope. Phys. Rev. Lett. 56: 930-933.

G. U. Lee, L. A. Chrisey, and R. J. Colton. 1994. Direct Measurement of the Forces Between Complementary Strands of DNA. Science. 266: 771-773.

G. Binnig, N. Garcia, and H. Rohrer. 1985. Conductivity Sensitivity of Inelastic Scanning Tunneling Microscopy. Phys. Rev. B. 32: 1336-1338.

G. Siqueira, J. Bras, and A. Dufresne. 2010. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers. 2: 728-765.

L. Heux, E. Dinand, and M. R. Vignon. 1999. Structural Aspects in Ultrathin Cellulose Microfibrils Followed by 13C CP-MAS NMR. Carbohydr. Polym. 40: 115-124.

M. Ioelovich. 2008. Cellulose as a Nanostructured Polymer: A Short Review. BioResources. 3: 1403-1418.

M. a. Hubbe, O. J. Rojas, L. a. Lucia, and M. Sain. Cellulosic Nanocomposites: A Review. BioResources. 3: 929-980.

Downloads

Published

2015-06-03

Issue

Section

Science and Engineering

How to Cite

THE POTENTIAL OF OPTICAL TWEEZER (OT) FOR VISCOELASTIVITY MEASUREMENT OF NANOCELLULOSE SOLUTION. (2015). Jurnal Teknologi, 74(8). https://doi.org/10.11113/jt.v74.4722