Q-SWITCHED THULIUM-DOPED FIBER LASER AT 2 MICRON REGION BY 802 NM PUMPING
DOI:
https://doi.org/10.11113/jt.v74.4729Keywords:
Thulium-doped fiber, Q-switching, multi-walled carbon nanotubesAbstract
An 1892.4 nm ultrafast passive Q-switched fiber laser is demonstrated by using Thulium-doped fiber (TDF) in conjunction with a multi-walled carbon nanotubes (MWCNTs) as a saturable absorber (SA). The MWCNTs film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity with 802 nm pump for Q-switching pulse generation. The pulse repetition rate can be tuned from 3.8 to 4.6 kHz while the corresponding pulse width reduces from 22.1 to 18.4 μs as the pump power is increased from 187.3 to 194.2 mW. A higher performance Q-switched Thulium-doped fiber laser (TDFL) is expected to be achieved with the optimization of the MWCNT-SA saturable absorber and laser cavity.
References
El-Sherif, A. F. and King, T. A. 2003. High-energy, High-brightness Q-switched Tm3+-doped Fiber Laser Using An Electro-optic Modulator. Optics Communications. 218(4-6): 337-344.
Jiang, M., Ma, H. F., Ren, Z. Y., Chen, X. M., Long, J. Y., Qi, M., Shen, D. Y., Wang Y. S. and Bai, J. T. 2013. A Graphene Q-switched Nanosecond Tm-doped Fiber Laser at 2 μm. Laser Physics Letters. 10(5): 055103.
Wang, Q., Geng, J., Jiang, Z., Luo, T., Jiang, S. 2011. Mode-Locked Tm–Ho-Codoped Fiber Laser at 2.06 µm. IEEE Photonics Technology Letters. 23: 682-684.
Kivistö, S., Koskinen, R., Paajaste, J., Jackson, S. D., Guina, M., & Okhotnikov, O. G. 2008. Passively Q-switched Tm3+, Ho3+-doped Silica Fiber Laser Using a Highly Nonlinear Saturable Absorber and Dynamic Gain Pulse Compression. Optics Express, 16(26): 22058.
Solodyankin, M. A., Obraztsova, E. D., Lobach, A. S., Chernov, A. I., Tausenev, A. V., Konov, V. I., & Dianov, E. M. 2008. Mode-locked 1.93 μm Thulium Fiber Laser with a Carbon Nanotube Absorber. Optics Letters, 33(12): 1336-1338.
Kieu, K., & Wise, F. 2009. Soliton Thulium-doped Fiber Laser With Carbon Nanotube Saturable Absorber. Photonics Technology Letters, IEEE. 21(3): 128-130.
Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P. H., Rozhin, A. G., & Ferrari, A. C. 2009. Nanotube–polymer Composites for Ultrafast Photonics. Advanced Materials, 21(3839): 3874-3899.
Ahmad, F., Harun, S., Nor, R., Zulkepely, N., Ahmad, H., & Shum, P. 2013. A Passively Mode-Locked Erbium-Doped Fiber Laser Based on a Single-Wall Carbon Nanotube Polymer. Chinese Physics Letters. 30(5): 054210.
Harun, S. W., Saidin, N., Zen, D. I. M., Ali, N. M., Ahmad, H., Ahmad, F., & Dimyati, K. 2013. Self-Starting Harmonic Mode-Locked Thulium-Doped Fiber Laser with Carbon Nanotubes Saturable Absorber. Chinese Physics Letters. 30(9): 094204.
Costa, S., Borowiak-Palen, E., Kruszynska, M., Bachmatiuk, A., & Kalenczuk, R. 2008. Characterization of Carbon Nanotubes by Raman Spectroscopy. Mater Sci Poland. 26(2): 433-441.
Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. 2005. Raman Spectroscopy of Carbon Nanotubes. Physics Reports. 409(2): 47-99.
Zhang L, Wang Y G, Yu H J, Sun L, Hou W, Lin X C and Li J M. 2011. Passive Mode-locked Nd:YVO4 Laser Using a Multi-Walled Carbon Nanotube Saturable Absorber. Laser Phys. 21: 1382-1386.
Ramadurai K, Cromer C L, Lewis L A, Hurst K E, Dillon A C, Mahajan R L and Lehman J H. 2008. High-performance Carbon Nanotube Coatings for High-power Laser Radiometry. J. Appl. Phys. 103: 013103.
Banhart F. 1999. Irradiation Effects in Carbon Nanostructures. Rep. Prog. Phys. 62: 1181.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.