• Farhah Abdillahil Moktamin Institut Alam Sekitar dan Pembangunan (LESTARI), Universititi Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
  • Goh Choo Ta Institut Alam Sekitar dan Pembangunan (LESTARI), Universititi Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
  • Mazlin Mokhtar Institut Alam Sekitar dan Pembangunan (LESTARI), Universititi Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
  • Mohd Rozaimi Ariffin Pusat Pengajian Sains Pembangunan dan Persekitaran, Fakulti Sains Sosial dan Kemanusiaan, Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia




Battery waste, recycling, pyrometallurgy, hydrometallurgy, bio-hydrometallurgy


The generation of waste batteries is increasing due to the wide application and short life span of batteries. The heavy metals used inside a battery are highly toxic and can cause harm to humans and to the environment. However, if waste batteries are recovered properly through a recycling process, precious metals inside the batteries can be extracted. In general, there are three methods for recycling waste batteries, namely pyrometallurgy, hydrometallurgy and bio-hydrometallurgy. This article reviews and discusses the efficiency and effectiveness of these methods in recycling waste batteries. Based on the review, each recycling method has its specific characteristics. The hydrometallurgy method tends to be used for recycling Li-ion batteries while the pyrometallurgy method tends to eliminate plumbum in automotive waste batteries. In general, the hydrometallurgical method is commonly used for recycling batteries due to its shorter process and lower cost. 


Purvins, A. Papaioannou, I., T. & Debarberis, L. 2013. Application of Battery-Based Storage System in House-Hold Demand Smoothening In Electricity-Distribution Grids. Journal of Energy Conversion and Management. 65: 272-284.

Hannan, M., A. Azidin, F., A. & Mohamed, A. 2014. Hybrid Electric Vehicles and Their Challenges: A Review. Journal of Renewable and Sustainable Energy Reviews. 29: 135-150.

McManus, M., C. 2013. Environmental Consequences of The Use of Batteries in Low Carbon System: The Impact of Battery Production. Journal of Applied Energy. 93: 288-295.

Sullivan, J., L. & Gaines, L. 2012. Status of Life Cycle Inventories for Batteries. Journal of Energy Conversion and Management. 58: 134-148.

Huang, K. Li, J. & Xu, Z. 2010. Characterization and Recycling of Cadmium from Waste Nickel-Cadmium Batteries. Journal of Waste Management. 30: 2292-2298.

Li, L. Ge, J. Chen, R. Wu, F. Chen, S. & Zhang, X. 2010. Environmental Friendly Leaching Reagent for Cobalt and Lithium Recovery from Spent Lithium-Ion Batteries. Journal of Waste Management. 30: 2615-2621.

EU. 2003. European Union: Directive On The Restriction Of The Use Of Certain Hazardous Substances In Electrical And Electronic Equipment. 2002/95/EC, February 2003. [Online]. From http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32002L0095:EN:HTML [Accessed 15 January 2015].

EPBA. 2014. Study on behalf of the European Portable Battery Association (EPBA): The Collection Of Waste Portable Batteries In Europe In View Of The Achievability Of The Collection Targets Set By Batteries Directive 2006/66/EC. SagisEPR.com. [Online]. From http://www.epbaeurope.net/documents/Reportontheportablebatterycollectionrates-UpdateDec-14-fullversion.pdf [Accessed 15 January 2015].

Shapek, R., A. 1995. Local Government Household Battery Recycling Collection Programs : Cost and Benefits. Journal of Resources, Conservation and Recycling. 15: 1-19.

Jadhav, U., U. & Hocheng, H. 2012. A Review of Recovery Metals from Industrial Waste. Journal of Achievements in Materials and Manufacturing Engineering. 54(2): 159-167.

DG Environment. 2008. Final Report – Battery Capacity Determination and Labelling. Eurepean Commission DG Environment. Bio Intelligence Service S.A.S.

Adediran, Y., A. Shorinwa, J., A. & Uhunmwangho, R. 2010. Spent Lead-Acid Battery Management: Nigeria as A Case Study. International Journal of Pure and Applied Science. 3(1): 102-107.

Babatunde, O., A. Eguma, C., A. Oyeledun, B., T. Igwilo, O., C. Awosanya, O., G. & Adegbenro, O. 2014. Mobile Phone Usage and Battery Disposal in Lagos, Nigeria. International Journal of Applied Psychology. 4(4): 147-154.

Asari, M. & Sakai, S., I. 2013. Li-Ion Battery Recycling and Cobalt Flow Analysis in Japan. Journal of Resources, Conservation and Recycling. 81: 52-59.

Ferella, F. Michelis, I., D. Pagnanelli, F. Beolchini, F. Furlani, G. Navarra, M. Veglio, F. & Toro, L. 2006. Recovery of Zinc and Manganese from Spent Batteries by Different Leaching Systems. Journal of Acta Metallurgica Slovaca. 12: 95-104.

Nagarajan, R. Thirumalaisamy, S. & Lakshumanan, E. 2012. Impact of Leachate on Groundwater Pollution Due to Non-Engineered Municipal Solid Waste Landfill Sites of Erode City, Tamil Nadu, India. Iranian Journal of Environmental Health Science & Engineering. 9: 1-12.

Kreusch, M., A. Ponte, M., J., J., S. Ponte, H., A. Kaminari, N., M., S. Marino, C., E., B. & Mymrin, V. 2007. Technological Improvements in Automative Battery Recycling. Journal of Resources, Conservation and Recycling. 52: 368-380.

Rydh, C., J. & Svard, B. 2003. Impact on Global Metal Flows Arising from The Use of Portable Rechargeable Batteries. The Science of the Total Environment. 302: 167-184.

Xu, J. Thomas, H., R. Francis, R., W. Lum, K., R. Wang, J. & Liang, B. 2008. A Review of Process and Technologies for The Recycling of Lithium-Ion Secondary Batteries. Journal of Power Sources. 177: 512-527.

Noguiera, C., A. & Margarido, F. 2012. Battery Recycling By Hydrometallurgy : Evaluation Of Simultaneous Treatment Of Several Cell Systems. The Minerals, Metals and Material Society. John Wiley & Sons Inc, Hoboken, New Jersey. 227-234. ISBN 978-1-11829-138-2.

Espinosa, D., C., R. Bernardes, A., M. Tenorio, J., A., S. 2004. An Overview on The Current Processes for The Recycling of Batteries. Journal of Power Source. 135: 311-319.

Wang, J. Chen, M. Chen, M. Luo, T. & Xu, Z. 2012. Leaching Study of Spent Li-Ion Batteries. Journal of Procedia Environmental Sciences. 16: 443-450.

Gong, C. & Lei, L. 2013. Battery Recycling Technologies : Recycling Waste Lithium Ion Batteries with The Impact on The Environment In-View. Journal of Environment and Ecology. 4(1): 14-28.

Zaini, S. Katiman, R. & Abd Rahim, M., N. 2008. Kepentingan Pertumbuhan Premis Kitar Semula dalam Pengurusan Sisa di Malaysia. Journal e-Bangi. 3(1): 1-10.

Lupi, C. Pasquali, M. & Era, A., D. 2005. Nickel and Cobalt Recycling from Lithium-Ion Batteries by Electrochemical Process. Journal of Waste Management. 25: 215-220.

Shuva, M., A., L. & Kurny, A., S., W. 2013. Hydrometallurgical Recovery of Value Metals from Spent Lithium Ion Batteries. American Journal of Materials Engineering and Technology. 1(1): 8-12.

Zhang, P. Yokoyama, T. Itabashi, O. Wakui, Y. Suzuki, T., M. & Inoue, K. 1999. Recovery of Metal Values from Spent Nickel-Metal Hydride Rechargeable Batteries. Journal of Power Sources. 77: 116-122.

Mantuano, D., P. Dorella, G. Elias, R., C., A. & Mansur, M., B. 2006. Analysis of Hydrometallurgical Route to Recover Base Metals from Spent Rechargeable Batteries by Liquid-Liquid Extraction with Cyanex 272. Journal of Power Sources. 159: 1510-1518.

Georgi-Maschler, T. Friedrich, B. Weyhe, R. Heegn, H. & Rutz, M. 2012. Development of Recycling Process for Li-Ion Batteries. Journal of Power Sources. 207: 173-182.

Rabah, M., A. Farghaly, F., E. & Abd-El Motaleb, M., A. 2008. Recovery of Nickel, Cobalt and Some Salts from Spent Ni-MH Batteries. Journal of Waste Management. 28(7): 1159-1167.

EU. 2013. European Union: Directive 2013/56/EU of the European Parliament and of the Council of 20 November 2013 amending Directive 2006/66/EC of the European Parliament And Of The Council On Batteries And Accumulators And Waste Batteries And Accumulators As Regards The Placing On The Market Of Portable Batteries And Accumulators Containing Cadmium Intended For Use In Cordless Power Tools And Of Button Cells With Low Mercury Content, And Repealing Commission Decision 2009/603/EC.

DOE UK. 2009. Environmental Protection: The Waste Batteries And Accumulators Regulations 2009. United Kingdom.

Australian Government. 2011. Product Stewardship Act 2011. ComLaw Authoritative Act 2011.

METI. 2003. Handbook on Resource Recycling Legislation and Trends in 3R. Recycling Plomotion Division.

JAS. 2016. Peraturan Kualiti Alam Sekeliling (Buangan Terjadual) 2005. Akta Kualiti Alam Sekeliling 1974. Jabatan Alam Sekitar.

Oliviera, C., R., d. Bernardes, A., M. & Gerbase, A., E. 2012. Collection and Recycling of Electronic Scrap: A Worldwide Overview and Comparison with The Brazilian Situation. Journal of Waste Management. 32: 1592-1610.

Tasaki, T. 2014. The Recycling Scheme for Compact Rechargeable Batteries in Japan under The Act on The Promotion of Effective Utilization of Resources. National Institute Environmental Studies, Japan.

Belardi, G. Lavecchia, R. Medici, F. & Piga, L. 2012. Thermal Treatment for Recovery of Manganese and Zinc from Zinc-Carbon and Alkaline Spent Batteries. Journal of Waste Management. 32: 1945-1951.

Soo, V., K. & Doolan, M. 2014. Recycling Mobile Phone Impact on Life Cycle Assessment. Procedia CIRP. 15: 263-271.

ABRI. 2010. Battery Use, Disposal & Recycling in Australia. Planet Ark. Research Report. [Online]. From http://recyclingweek.planetark.org/documents/doc-513-battery-research-report-final.pdf [Accessed on 11 November 2014].

Department of Environment, Climate Change and Water NSW. 2010. Strategic Directions and Implementation Plan 2011-2015: NSW Waste Avoidance and Resource Recovery Strategy. NSW Government.

Buzatu, T. Popescu, G. Birloaga, I. & Saceanu, S. 2013. Study Concerning The Recovery of Zinc and Manganese from Spent Batteries by Hydrometallurgical Processes. Journal of Waste Management. 33: 699-705.

Bernardes, A., M. Espinosa, D., C., R. & Tenorio, J., A., S. 2004. Recycling of Batteries: A Review of Current Processes and Technologies. Journal of Power Source. 139: 291-298.

de Souza, C., C., B., M. & Tenorio, J., A., S. 2004. Simultaneous Recovery of Zinc and Manganese Dioxide from Household Alkaline Batteries Through by Hydrometallurgical Processing. Journal of Power Source. 136: 191-196.

Bhat, V. Rao, P. & Patil, Y. 2012. Development of an Integrated Model to Recover Precious Metals from Electronic Scrap – A Novel Strategy for E-Waste Management. Journal of Procedia Social and Behavioral Sciences. 37: 397-406.

Sun, L. & Qiu, K. 2011. Vacuum Pyrolysis and Hydrometallurgical Process for The Recovery of Valuable Metals from Spent Lithium-Ion Batteries. Journal of Hazardous Materials. 194: 378-384.

Lee, J., C. Song, H., T. Yoo, J., M. 2007. Present Status of The Recycling of Waste Electrical and Electronic Equipment in Korea. Journal of Resources, Conservation and Recycling. 50: 380-397.

Rabah, M., A. & Barakat, M., A. 2001. Energy Saving and Pollution Control for Short Rotary Furnace in Secondary Lead Smelters. Journal of Renewable Energy. 23: 561-577.

Quass, U. Fermann, M. & Broker, G. 2000. The European Dioxin Emission Inventory Stage II. European Commission, Directorate General of Environment.

g-pbatt. 2014. The complete waste battery service. [Online]. From http://www.g-pbatt.co.uk/recycle.html [Accessed on 11 Disember 2014].

Gaines., L. 2014. The Future of Automotive Lithium-Ion Battery Recycling: Charting a Sustainable Course. Journal of Sustainable Materials and Technologies. 1-2: 2-7.

Coman, V. Robotin, B. & Ilea, P. 2013. Nickel Recovery/Removal from Industrial Waste: A Review. Journal of Resources, Conservation and Recycling. 73: 229-238.

Ferreira, D., A. Prados, L., M., Z. Majuste, D. Mansur, M., B. 2009. Hydrometallurgical Separation of Aluminium, Cobalt, Copper and Lithium Ion from Spent Li-Ion Batteries. Journal of Power Source. 187: 238-246.

Muller, T. & Friedrich, B. 2006. Development of Recycling Process for Nickel-Metal-Hydride Batteries. Journal of Power Sources. 168: 1498-1509.

Freitas, M., B., J., G. Penha, T., R. & Sirtoli, S. 2007. Chemical and Electrochemical Recycling of The Negative Electrodes from Spent Ni-Cd Batteries. Journal of Power Source. 163: 1114-1119.

Reddy, B., R. & Priya, D., N. 2006. Chloride Leaching and Solvent Extraction of Cadmium, Cobalt and Nickel From Spent Nickel-Cadmium Batteries Using Cyanex 923 And 272. Journal of Power Source. 161: 1428-1434.

Santos, V., E., O. Celante, V., G. Lelis, M., F., F. & Freitas, M., B., J., G. 2012. Chemical and Electrochemical Recycling of The Nickel, Cobalt, Zinc and Manganese from The Positives Electrodes of Spent Ni-MH Batteries from Mobile Phones. Journal of Power Source. 218: 435-444.

Gahan, C., S. Srichandan, H. Kim, D., J. & Akcil, A. 2012. Biohydrometallurgy and Biomineral Processing Technology: A Review on Its Past, Present and Future. Research Journal of Recent Science. 1(10): 85-99.

Willner, J. Kadukova, J. Fornalczyk., & Saternus, M. 2015. Biohydrometallurgical Methods for Metal Recovery from Waste Materials. Journal of Metalurgija. 54(1): 255-258.

Pant, D. Joshi, D. Upreti, M., K. & Kotnala, R., K. 2012. Chemical and Biological Extraction of Metals Present in E-Waste: A Hybrid Technology. Journal of Waste Management. 32: 979-990.

Xin, B. Jiang, W. Li, X. Zhang, K. Liu, C. Wang, R. & Wang, Y. 2012. Analysis of Reason for Decline of Bioleaching Efficiency of Spent Zn-Mn Batteris at High Pulp Densities and Exploration Measure for Improving Performance. Journal of Bioresource Technology. 112: 186-192

Mishra, D. Kim, D., J. Ralph, D., E. Ahn, J., G. & Rhee, Y., H. 2008. Bioleaching of Metals from Spent Lithium Ion Secondary Batteries Using Acidithiobacillus Ferrooxidants. Journal of Waste Management. 28: 333-338.

Zhao, L. Yang, D. & Zhu, N., W. 2008. Bioleaching of Spent Ni-Cd Batteries by Continuous Flow System: Effect of Hidraulic Retention Time and Process Load. Journal of Hazardous Materials. 160: 648-654.

Jefri Jaafar & Wan Azlina Ahmad. 2004. Batteries Recycling Process Using Local Isolated Thermopile Culture. The 4th Annual Seminar of National Science Fellowship. University Technology Malaysia.

Cerruti, C. Curutchet, G. & Donati, E. 1998. Bio-Dissolution of Spent Nickel-Cadmium Batteries Using Thiobacillus Ferrooxidants. Journal of Biotechnology. 62: 209-219

Zabaniotou, A. Kouskoumvekaki, A. & Sanopoulos, D. 1999. Recycling of Spent Lead/Acid Batteries: The Case of Greece. Journal of Resources, Conservation and Recycling. 25: 301-317.

Bartolozzi, M. Bracinni, G. Bonvini, S. & Marconi, P., F. 1995. Hydrometallurgical Recovery Process for Nickel-Cadmium Spent Batteries. Journal of Power Sources. 55: 247-250.

Pareuil, P. Hamdoun, H. Bordas, F. Joussein, E. & Bollinger, J., C. 2011. The Influence of Reducing Conditions on The Dissolution of a Mn-Rich Slag from Pyrometallurgical Recycling of Alkaline Batteries. Journal of Environmental Management. 92: 102-111.

Zhang, P. Yokoyaman, T. Itabashi, O. Wakui, Y. Suzuki, T., M. & Inoue, K. 1998. Hydrometallurgical Process for Recovery of Metal Values from Spent Nickel-Metal Hydride Secondary Batteries. Journal of Hydrometallurgy. 50: 61-75.

Gupta, C., K. & Mukhreje, T., K. 1990. Hydrometallurgical In Extraction Processes: Volume 1. CRC Press. Inc.

Fathi Habashi. 2013. Extraction Metallurgy and National Policy. International Journal of Nonferrous Metallurgy. 2: 31-34.

Sayilgan, E. Kukrer, T. Civelekoglu, G. Ferella, F. Akcil, A. Veglio, F. & Kitis, M. 2009. A Review of Technologies for The Recovery of Metals from Spent Alkaline and Zinc-Carbon Batteries. Journal of Hydrometallurgy. 97(3-4): 158-166.

Turek, A., S. Szczepaniak, W. & Malicka, M., Z. 2014. Electrochemical Evaluation Of Manganese Reducers – Recovery of Mn from Zn-Mn and Zn-C Battery Waste. Journal of Power Sources. 270: 668-674.

Pan, J. Sun, Y. Li, W. Knight, W. & Manthiram, A. 2013. A Green Lead Hydrometallurgical Process Based on A Hydrogen-Lead Oxide Fuel Cell. Nature Communications. McMillan Publisher.






Science and Engineering

How to Cite

ULASAN KAEDAH KITAR SEMULA SISA BATERI. (2016). Jurnal Teknologi, 78(9). https://doi.org/10.11113/jt.v78.4903