OPTIMIZATION APPROACH FOR GREENHOUSE GAS TO GREEN ENERGY FOR A LOW CARBON REGION OF ISKANDAR MALAYSIA

Authors

  • Saeed Isa Ahmed Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Anwar Johari Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Haslenda Hashim Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ramli Mat Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Jeng Shiun Lim Process System Engineering Centre (PROSPECT), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mazura Jusoh Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Habib Alkali Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Shamsi Hafshar Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia bProcess System

DOI:

https://doi.org/10.11113/jt.v75.5157

Keywords:

Landfill gas, greenhouse gas, green energy, Iskandar Malaysia, Optimization

Abstract

Landfill gas (LFG) like any other greenhouse gases (GHG) is a threat to the environment; hence its mitigation through effective utilization is necessary. The objective of this study is to estimate the amount of LFG captured using IPCC methodology and then develop optimization model for the LFG utilization for green energy production for Iskandar Malaysia. Of the three MSW Scenarios considered, the most appropriate was Scenario MIX, giving projection of MSW to landfill ranging from 600,000 tons in 2010 to 711,000 tons in 2035 for Iskandar Malaysia. From this, a mean annual LFG capture of 21,672 tons was estimated. The Mixed Integer Programing model considered Scenario ST as the more appropriate of the two LFG Scenarios, favoring combined heat and power generation with steam turbines over other options. The optimal result yielded a mean annual electricity and steam generation of 20,588 MWh (2.3 MW) and 150 million MJ respectively. The mean electricity generation represents 0.16% and 0.02% of the maximum electricity demand for Iskandar Malaysia and Peninsular Malaysia respectively. Additionally, GHG emission reduction of 12,000 tons CO2 equivalent was achieved. The findings revealed the potentials in LFG capture from the case study in terms of green energy and GHG emission reduction for sustainable development.

References

Houghton, J. T., Y. Ding, D. J. Griggs, et al., eds. 2001. Climate Change. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

Russel, R. 2007. The Greenhouse Effect and Greenhouse Gases. University Corporation for Atmospheric Research. Windows to the Universe.

IPCC. 2006. Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories. 3.1.

Wiedmann, T., J. Barrett. 2011. Environ Sci Policy. 14: 1041.

Agamuthu, P. 2001. Solid Waste: Principles And Management With Malaysian Case Studies.

USEPA. US. 2006. Environmental Agency. Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020, In: USEPA, ed. Washington, DC,

Thompson, S., J. Sawyer, R. Bonam, J.E. Valdivia. 2009. Waste Manage. (Oxford). 29: 2085.

Hao, X. L., H. X. Yang, G. Q. Zhang. 2008. Energy Policy. 36: 3662.

Shin, H.-C., J.-W. Park, H.-S. Kim, E.-S. Shin. 2005. Energ Policy. 33: 1261.

Bove, R., P. Lunghi. 2006. Energy Convers. Manage. 47: 1391.

Jafar, A. H., A. Q. Al-Amin, C. Siwar. 2008. Renew Energy. 33: 2229.

Ahmed, S. I., A. Johari, H. Hashim, R. Mat, H. Alkali. 2013. IJETED. 1: 506.

Johari, A., S .I. Ahmed, H. Hashim, H. Alkali, M. Ramli. 2012. Renew Sust Energ Rev. 16: 2907.

Muis, Z. A., H. Haslenda, Z. A. Manah, F. M. Taha. 2010. J. Appl. Sc. 10: 2613.

Abushammala, M.F.M., N.E.A. Basri, H. Basri, A.H. El-shafie, A. A. H. Kadhum. 2010. Waste Manage. Res. 0: 1.

Edgar, T. F., D. M. Himmelblau, S.L. Lasdon, eds. 2001. Optimization of Chemical Processes, 2nd Edition. McGraw-Hill Companies, New York: .

Rizzo, A., J. Glasson. 2012. Cities. 29: 417.

ISKANDAR-MALAYSIA. 2010. Integrated Solid Waste Management Blueprint for Iskandar Malaysia Stage 4 – Integrated Solid Waste Management Blueprint. Accessed from www.iskandarmalaysia.com.my on 06/12/2013. Johor,

EEA. 2013. Managing municipal solid waste - a review of achievements in 32 European countries.

Samsudin, M. D. M., M. Mat Don. 2013. Jurnal Teknologi. 62.

Ham, R. K., K. K. Hekimian, S. L. Katten, et al. 1979. Recovery, Processing and Utilization of Gas from Sanitary Landfills. Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory. 1.

Verma, S. Anaerobic Digestion Of Biodegradable Organics In Municipal Solid Wastes. Columbia University, 2002.

Barlaz, M., S. Cowie, B. Staley, G. Hater. 2004. Production of NMOCs and trace organics during the decomposition of refuse and waste components under anaerobic and aerobic conditions. Third Intercontinental Landfill Research Symposium Nov 29th–Dec 2nd,

Barlaz, M. A., A. P. Rooker, P. Kjeldsen, M. A. Gabr, R. C. Borden. 2002. Environ. Sci. Technol. 36: 3457.

Ahmed, S. I., A. Johari, H. Hashim, et al. 2014. Environmental Progress & Sustainable Energy. n/a.

Sullivan, W. G., E. M. Wicks, C. P. Koelling. 2012. Engineering Economy 15th Edition Chapter 8–Price Changes and Exchange Rates. Singapore. Prentice Hall, Inc,: 200

Downloads

Published

2015-08-17

Issue

Section

Science and Engineering

How to Cite

OPTIMIZATION APPROACH FOR GREENHOUSE GAS TO GREEN ENERGY FOR A LOW CARBON REGION OF ISKANDAR MALAYSIA. (2015). Jurnal Teknologi, 75(6). https://doi.org/10.11113/jt.v75.5157