INVESTIGATION OF SURFACE ROUGHNESS IMPACT ON MEAN WIND FLOW USING RNG k-ε MODEL

Authors

  • Sheikh Ahmad Zaki Shaikh Salim Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Ahmad Zaki Jaafar Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Ahmad Faiz Mohammad Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Sukri Mohamed Mat Ali Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
  • Azli Abd Razak Faculty of Mechanical Engineering, Universiti Teknologi MARA, Shah Alam, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.5161

Keywords:

Small-scale roughness, urban canopy flow, packing density, streamwise velocity, turbulent kinetic energy, renormalisation group k- ε model

Abstract

Wind flow in the urban boundary layer is influenced by both large- and small-scale surface roughness. In this study, Reynolds-averaged Navier-Stokes simulations using the renormalisation group (RNG) k-ε model were performed to study the wind flow in square arrays with small-scale roughness elements at the front and back of cubical obstacles at packing densities of 25.0% and 30.9%. The presence of small-scale roughness reduces streamwise velocity but increases turbulent kinetic energy. Moreover, small vortices are formed within the canopy because of small-scale roughness. The generated streamwise velocity profiles are similar at packing densities of 25.0% and 30.9%, but the drag coefficient is higher in the latter case. In brief, the impact of small-scale roughness on urban wind flow is considerable. The results of this study can contribute to future research on wind flow, particularly in the urban environment.  

References

Skote, M., and M. Sandberg. 2005. Numerical and Experimental Studies of Wind Environment in an Urban Morphology. Atmospheric Environment. 39(33): 6147-6158.

Oke, T. R. 1988. Street Design and Urban Canopy Layer Climate. Energy and Buildings. 11(1-3): 103-113.

Coceal, O., T. G. Thomas, I. P. Castro, and S. E. Belcher. 2006. Mean Flow and Turbulence Statistics over Groups of Urban-like Cubical Obstacles. Boundary-Layer Meteorol. 121: 491-519

Salizzoni, P., L. Soulhac, P. Mejean, and R. J. Perkins. 2008. Influence of a Two-Scale Roughness on a Neutral Turbulent Boundary Layer. Boundary-Layer Meteorol. 127: 97-110.

Saji, N. 2012. A Review of Malaysian Terraced House Design and the Tendency of Changing. Journal of Sustainable Development. 5(5): 140-149.

Sazally, S. H., E. O. Omar, H. Hamdan, and A. F. I. Bajunid. 2009. Procedia - Social and Behavioral Sciences. 49: 319-327.

Abd Razak, A., A. Hagishima, N. Ikegaya, and J. Tanimoto. 2013. Analysis of Airflow over Building Arrays for Assessment of Urban Wind Environment. Building & Env. 59: 56-65.

Mochizuki, S., and F. T. M. Nieuwstadt. 1996. Reynolds-Number-Dependence of the Maximum in the Streamwise Velocity Fluctuations in Wall Turbulence. Exp. In Fluids. 21: 218-226.

Xie, Z.-T., O. Coceal, and I. P. Castro. 2008. Large-Eddy Simulation of Flows over Random Urban-like Obstacles. Boundary-Layer Meteorol. 129: 1-23.

Mohammad, A. F., S. A. Zaki, M. S. M. Sukri, A. Hagishima, and A. Abd Razak. 2014. Large-Eddy Simulation of Wind-Induced Ventilation in Urban Buildings of Random Staggered Arrays. Proceedings of Computational Wind Engineering 2014, June 8-12. Hamburg, Germany.

Mohammad, A. F., S. A. Zaki, A. Hagishima, and M. S. M. Ali. 2014. Determination of Aerodynamic Parameters of Urban Surfaces: Methods and Results Revisited. Theor. Appl. Climatology. DOI: 10.1007/s00704-014-1323-8.

Zaki, S. A., A. Hagishima, J. Tanimoto, and N. Ikegaya. 2011. Aerodynamic Parameters of Urban Building Arrays with Random Geometries. Boundary-Layer Meteorol. 138: 99-120.

Cheng, Y., F. S. Lien, E. Yee, and R. Sinclair. 2003. A Comparison of Large Eddy Simulations with a Standard k-E Reynolds-Averaged Navier-Stokes model for the Prediction of a Fully Developed Turbulent Flow over a Matrix of Cubes. Journal of W. Eng. and Ind. Aerodyn. 91: 1301-1328.

Stull, R. B. 1988. An introduction to Boundary Layer Meteorology. Dordrecht: Kluwer Academic Publishers.

Hang, J., Y. Li, and M. Sandberg. 2011. Experimental and Numerical Studies of Flows through and within High-Rise Building Arrays and Their Link to Ventilation Strategy. Journal of W. Eng. and Ind. Aerodyn. 99: 1036-1055.

Hagishima, A., J. Tanimoto, K. Nagayama, and S. Meno. 2009. Aerodynamic Parameter of Regular Arrays of Rectangular Blocks with Various Geometries. Boundary-Layer Meteorol. 132: 315-337.

Zaki, S. A., A. Hagishima, J. Tanimoto, A. F. Mohammad, and A. Abd Razak. 2014. Estimation of Aerodynamic Parameters of Urban Building Arrays Using Wind Tunnel Measurements. Journal of Eng. Science and Tech. 9(2): 176-190.

Kanda, M., R. Moriwaki, and F. Kasamatsu. 2004. Large-Eddy Simulation of Turbulent Organized Structures within and above Explicitly Resolved Cube Arrays. Boundary-Layer Meteorol. 112(2): 343-368.

Kono, T., T. Tamura, and Y. Ashie. 2010. Numerical Investigation of Mean Winds within Canopies of Regularly Arrayed Cubical Buildings under Neutral Stability Conditions. Boundary-Layer Meteorol. 134: 131-155.

Downloads

Published

2016-08-28

Issue

Section

Science and Engineering

How to Cite

INVESTIGATION OF SURFACE ROUGHNESS IMPACT ON MEAN WIND FLOW USING RNG k-ε MODEL. (2016). Jurnal Teknologi, 78(9). https://doi.org/10.11113/jt.v78.5161