SYNTHESIS OF METAL OXIDE-BASED NANOCOMPOSITES AND MULTICOMPONENT COMPOUNDS USING LAYER-BY-LAYER METHOD AND PROSPECTS FOR THEIR APPLICATION
DOI:
https://doi.org/10.11113/jt.v75.5165Keywords:
Nanocomposites, LbL synthesis, SILD, deposition, characterizationAbstract
The ability of Layer-by-Layer (LbL) or Successive Ionic Layer Deposition (SILD) technology to synthesize the layers of nanocomposites, “hybrid†structures and multicomponent metal oxides on various substrates is being discussed in this report. It was shown that concentration and pH of the solutions used, the processing time, and the number of the LbL (SILD) cycles were the main parameters of this process. It was made a conclusion that coatings formed by LbL technology can be used in gas sensors and catalysis for the surface functionalization, in membranes and filters for the pore size controlling, in solar cells for the solar energy conversion, in medicine for the formation of bactericidal coatings, and so on. Â
References
Cury Camargo, P. H. K. G. Satyanarayana, and F. Wypych. 2009. Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities. Materials Research. 12: 1-39.
Li, J., and J.Z. Zhang. 2009. Optical Properties and Applications of Hybrid Semiconductor Nanomaterials. Coordination Chemistry Reviews. 253: 3015-3041.
Moya, J. S., S. Lopez-Esteban, and C. Pecharroman. 2007. The Challenge of Ceramic/Metal Microcomposites and Nanocomposites. Progress in Material Science. 52: 1017-1090.
Zhang, S., D. S. Yongqing, and F. H. Du. 2003. Recent Advances of Superhard Nanocomposite Coatings: A Review. Surface Coating Technology. 167: 13-119.
Wachs, I. E. 2005. Recent Conceptual Advances in the Catalysis Science of Mixed Metal Oxide Catalytic Materials. Catalysis Today. 100: 79-94.
Dudek, M. 2008. Composite oxide electrolytes for electrochemical devices. Advances in Material Science. 8: 15-30.
Comini, E., M. Ferroni, V. Guidi, G. Faglia, G. Martinelli, and G. Sberveglieri. 2002. Nanostructured Mixed Oxides Compounds for Gas Sensing Applications. Sensors and Actuators B. 84: 26-32.
Gas’kov, A., and M. Rumyantseva. 2009. Metal oxide Nanocomposites: Synthesis and Characterization in Relation with Gas Sensing Phenomena. In: Baraton, M. I. (ed.) Sensors for Environment, Health and Security. Dordrecht: Springer Science + Business Media B. V. 3-29.
Konig, U. 1987. Deposition and Properties of Multicomponent Hard Coating. Surface Coating Technology. 33: 91-103.
Willmott, P. R. 2004. Deposition of Complex Multielemental Thin Films. Progress in Surface Science. 76: 163-217.
Jones, A. C., and P. O’Brien. 1997. CVD of Compound Semiconductors. Precursor Synthesis, Development and Applications. Weinheim: Wiley/VCH.
Sakka, S. (ed.). 2004. Sol–gel Science and Technology. Vol. 3: Application of Sol–Gel Technology. Massachusetts: Kluwer Academic.
Viswanathan, V., T. Laha, K. Balani, A. Agarwal, and S. Seal. 2006. Challenges and Advances in Nanocomposite Processing Techniques. Material Science and Engineering Reports. 54: 121-285.
Niesen, T. P., and M. R. De Guire. 2001. Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions. Journal of Electroceramics. 6: 169-207.
Tolstoi, V. P. 1993. Synthesis of Thin-layer Structures by the Ionic Layer Deposition Method. Russian Chemical Reviews. 62: 237-242.
Tolstoy, V. P. 2006. Successive Ionic Layer Deposition. An Application in Nanotechnology. Russian Chemical Reviews. 75: 161-175.
Crespilho, F. N., V. Zucolotto, O. N. Oliveira Jr., and F. C. Nart. 2006. Electrochemistry of Layer-by-Layer Films: A Review. International Journal of Electrochemical Science. 1: 194-214.
Decher, G. 2012. Multilayer Thin Films-Sequential Assembly of Nanocomposite Materials. Vol 2. Weinheim: Wiley-VCH.
Pathan, H. M., and C. D. Lokhande. 2004. Deposition of Metal Chalcogenide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method. Bulletin of Material Science. 27: 85-111.
Korotcenkov, G., V. Tolstoy, and J. Schwank. 2006. Successive Ionic Layer Deposition (SILD) as a New Sensor Technology: Synthesis and Modification of Metal Oxides. Measurement Science and Technology. 17: 1861-1869.
Tolstoy, V. 1997. The Peroxide Route of the Successive Ionic Layer Deposition Procedure for Synthesis Nanolayers of Metal Oxides, Hydroxides and Peroxides. Thin Solid Films. 307: 10-13.
Tolstoi, V. P. 2009. New Routes for the Synthesis of Nanocomposite Layers of Inorganic Compounds by the Layer-by-Layer Scheme. Russian Journal of General Chemistry. 79: 2578-2583.
Tolstoy, V. P., and E. V. Tolstobrov. 2002. The Synthesis of Bi–V–O-containing Nanolayers on Silica Surfaces by the Successive Ionic Layer Deposition Technique. Solid State Ionics. 151: 165-169.
Gulina, L. B., and V. P. Tolstoy. 2003. Synthesis by SILD of Sn0.6MoOy•nH2O Nanolayers on Silica. Thin Solid Films. 440: 74-77.
Gulina, L. B., and V. P. Tolstoi. 2004. Synthesis on Silica Surface by the Ionic Deposition Technique of Nanolayers of Heteropolycompounds on the Basis of Phosphomolybdic Acid. Russian Journal of General Chemistry. 74: 327-330.
Tolstoy, V., L. Gulina, G. Korotcenkov, and V. Brinzari. 2003. Synthesis of Nanolayers of Hybrid-type Hydroxo-SnOH and Heteropoly-HxPWyOz Compounds on Silica Surfaces by Successive Ionic Layer Deposition Method. Applied Surface Science. 221: 197-202.
Semischenko, K. B., I. V. Stepanenko, L. B. Gulina, and V. P. Tolstoi. 2011. Synthesis and Study of Cerium(IV) Polytungstate Nanolayers. Russian Journal of General Chemistry. 81: 1075-1077.
Kramarenko, E. A., L. B. Gulina, I. V. Chernyshova, and V. P. Tolstoi. 2007. In0.22SnS0.33(OH)4 Nanolayers Synthesized by the Layer-by-Layer Technique. Russian Journal of General Chemistry. 77: 987-989.
Korotcenkov, G., V. Macsanov, V. Tolstoy, V. Brinzari, J. Schwank, and G. Faglia. 2003. Structural and Gas Response Characterization of Nano-size SnO2 Films Deposited by SILD Method. Sensors and Actuators B. 96: 602-609.
Korotcenkov, G., S. D. Han, B. K. Cho, and V. Tolstoy. 2009. Structural Characterization and Phase Transformations in Metal Oxide Films Synthesized by Successive Ionic Layer Deposition (SILD) Method. Processing and Application of Ceramics. 3: 19-28.
Kohl, D. 1990. The Role of Noble Metals in the Chemistry of Solid State Gas Sensors. Sensors and Actuators B. 1: 158-165.
Korotcenkov, G. 2005. Gas Response Control Through Structural and Chemical Modification of Metal Oxides: State of the Art and Approaches. Sensors and Actuators B. 107: 209-232.
Tolstoy, V., and E. Tolstobrov. 2004. Synthesis of “Hybrid†Agx0•MnO2•nH2O Metal Oxide Nanolayers by Ionic Deposition. Russian Journal of General Chemistry. 74: 360-363.
Korotcenkov, G., L. Gulina, B. K. Cho, S. H. Han, and V. Tolstoy. 2011. SnO2-Au Nanocomposite Synthesized by Successive Ionic Layer Deposition (SILD) Method: Characterization and Application in Gas Sensors. Materials Chemistry and Physics. 128: 433-441.
Gulina, L. B., V. P. Tolstoi, and E. V. Tolstobrov. 2010. Agx–SnO2 Nanocomposite Layers Synthesized by Ionic Layer Deposition Onto Silica Surface. Russian Journal of Applied Chemistry. 83: 1525-1528.
Tolstoi, V. P., and L. B. Gulina. 2008. Layers of xCuS–SiO2•nH2O Nanocomposite, Synthesized by the Layer-by-Layer Technique. Russian Journal of General Chemistry. 78: 518-520.
Tolstoi, V. P., and L. B. Gulina. 2008. Sb2S3-SiO2 Nanocomposite Layers Synthesized Using the Layer-by-Layer Technique. Russian Journal of Applied Chemistry. 81: 1068-1070.
Berga, H. E., and W.O. Roberts (eds.). 2005. Colloidal Silica: Fundamentals and Applications. Boca Raton: CRC Press.
Tolstoy, V., S. D. Han, and G. Korotcenkov. 2010. Chapter 9: Successive Ionic Layer Deposition (SILD): Advanced Method for Deposition and Modification of Functional Nanostructured Metal Oxides Aimed for Gas Sensor Applications. In: Umar, A., and Y.B. Hahn (eds.) Metal Oxide Nanostructures and Their Applications, Vol. 3, Applications (Part 1). Stevenson Ranch: American Scientific Publishers. 384-436.
Korotcenkov, G. (ed.). 2010-2013. Chemical Sensors. Vols. 1-6. New York: Momentum Press.
Korotcenkov, G., B. K. Cho, L. Gulina, and V. Tolstoy. 2009. Ozone Sensors Based on SnO2 Films Modified by Sno2-Au Nanocomposites Synthesized by the SILD Method. Sensors and Actuators B. 138: 512-517.
Korotcenkov, G., B. K. Cho, V. Brinzari, L. Gulina, and V. Tolstoy. 2014. Catalytically Active Filters Deposited by SILD Method for Inhibiting Sensitivity to Ozone of Sno2-based Conductometric Gas Sensors. Ferroelectrics. 459: 46-51.
Korotcenkov, G. 2013. Handbook of Gas Sensor Materials, Vols. 1-2. New York: Springer.
Jiang, S. P., Z. Liu, and Z. Q. Tian. 2006. Layer-by-layer Self-Assembly of Composite Polyelectrolyte–Nafion Membranes for Direct Methanol Fuel Cells. Advanced Matererials. 18: 1068-1072.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.