GROWTH CHARACTERISTIC OF GZO FILM FABRICATED BY RF MAGNETRON SPUTTERING
DOI:
https://doi.org/10.11113/jt.v75.5169Keywords:
GZO, RF sputtering, growth characteristic, structural properties, optical properties, surface morphologyAbstract
This paper investigate the dependence of film thickness onto characteristic of Gallium doped Zinc Oxide (GZO). GZO films were deposited on a glass substrate by RF Magnetron Sputtering using GZO ceramic target with 99.99% purity. Thicknesses were altered by varying the deposition time from 10 min to 50 min meanwhile the sputtering power, argon flow and target distance were fixed in order to investigate the influence of film thickness to the growth characteristic, structural, optical properties and surface morphology of the films. Sputtering was performed with RF power of 100 watt and the argon flow was set at 10 sccm. GZO thin films on various thicknesses range from 130 nm to 460 nm were successfully deposited onto glass substrate with the crystallite grain size in range of 20.63 nm to 22.04 nm with the optical transmittance above 85 %.Â
References
H. Kim and A. Pique. 2005. Effect of Aluminum Doping on Zinc Oxide Thin Films Grown by Pulsed Laser Deposition for Organic Light-emitting Devices. 798-802.
M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, and G. Kiriakidis. 2007. Comparative Study of Zinc Oxide and Aluminum Doped Zinc Oxide Transparent Thin Films Grown by Direct Current Magnetron Sputtering. Thin Solid Films. 515(16): 6562-6566.
Z. L. Wang. 2004. Zinc Oxide Nanostructures: Growth, Properties and Applications. J. Phys. Condens. Matter. 16(25): R829-R858.
S. Fernández and F. B. Naranjo. 2010. Optimization of Aluminum-doped Zinc Oxide Films Deposited at Low Temperature by Radio-frequency Sputtering on Flexible Substrates for Solar Cell Applications. Sol. Energy Mater. Sol. Cells. 94(2): 157-163.
M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zúñiga Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, a Bakin, a Behrends, M. Al-Suleiman, a El-Shaer, a Che Mofor, B. Postels, a Waag, N. Boukos, a Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang. 2009. Zinc Oxide Nanorod Based Photonic Devices: Recent Progress in Growth, Light Emitting Diodes and Lasers. Nanotechnology. 20(33): 332001.
Y.-L. Wang, L. N. Covert, T. J. Anderson, W. Lim, J. Lin, S. J. Pearton, D. P. Norton, J. M. Zavada, and F. Ren. 2008. RF Characteristics of Room-Temperature-Deposited, Small Gate Dimension Indium Zinc Oxide TFTs. Electrochem. Solid-State Lett. 11(3): H60.
D. Song. 2008. Effects of rf Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-doped Zinc Oxide Films by Magnetron Sputtering. Appl. Surf. Sci. 254(13): 4171-4178.
C. W. Gorrie, A. K. Sigdel, J. J. Berry, B. J. Reese, M. F. a. M. van Hest, P. H. Holloway, D. S. Ginley, and J. D. Perkins. 2010. Effect of Deposition Distance and Temperature on Electrical, Optical and Structural Properties of Radio-frequency Magnetron-sputtered Gallium-doped Zinc Oxide. Thin Solid Films. 519(1): 190-196.
X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, and H. Ma. 2005. Thickness Dependence of Properties of ZnO:Ga Films Deposited by Rf Magnetron Sputtering. Appl. Surf. Sci., vol. 245(1-4): 310-315.
A. de Souza Gonçalves, S. Antonio Marques de Lima, M. Rosaly Davolos, S. Gutierrez Antônio, and C. de Oliveira Paiva-Santos. 2006. The effects of ZnGa2O4 formation on structural and optical properties of ZnO:Ga powders. J. Solid State Chem. 179(5): 1330-1334.
V. Fathollahi and M. M. Amini. 2001. Sol–gel Preparation of Highly Oriented Gallium-doped Zinc Oxide Thin Films. September: 235-239.
T. Prasada Rao, M. C. Santhosh Kumar, and N. Sooraj Hussain. 2012. Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis. J. Alloys Compd. 541: 495-504.
S. Senthilkumaar, K. Rajendran, S. Banerjee, T. K. Chini, and V. Sengodan. 2008. Influence of Mn Doping on the Microstructure and Optical Property of ZnO. Mater. Sci. Semicond. Process. 1(1): 6-12.
M. Y. Ghotbi. 2012. Nickel Doped Zinc Oxide Nanoparticles Produced by Hydrothermal Decomposition of Nickel-Doped Zinc Hydroxide Nitrate. Particuology. 10(4): 492-496.
T. Nam, C. W. Lee, H. J. Kim, and H. Kim. 2014. Growth Characteristics and Properties of Ga-doped ZnO (GZO) Thin Films Grown by Thermal and Plasma-enhanced Atomic Layer Deposition. Appl. Surf. Sci. 2-7.
N. Manjula, K. Usharani, A. R. Balu, and V. S. Nagarethinam. 2014. Studies on the Physical Properties of three Potentially Important TCO Thin Films Fabricated by a Simplified Spray Technique under same Deposition Conditions. 6(1): 705-718.
D.-H. Lee, K. Kim, Y. S. Chun, S. Kim, and S. Y. Lee. 2012. Substitution Mechanism of Ga for Zn Site Depending on Deposition Temperature for Transparent Conducting Oxides. Curr. Appl. Phys. 12(6): 1586-1590.
D. Hazra, S. Datta, M. Mondal, J. Ghatak, P. V. Satyam, and A. K. Gupta. 2008. Thickness Dependent Lattice Expansion in Nanogranular Nb Thin Films. J. Appl. Phys. 103(10): 103535.
X.-Y. Li, H.-J. Li, Z.-J. Wang, H. Xia, Z.-Y. Xiong, J.-X. Wang, and B.-C. Yang. 2009. Effect of Substrate Temperature on the Structural and Optical Properties of Zno and Al-Doped Zno Thin Films Prepared by Dc Magnetron Sputtering. Opt. Commun. 282(2): 247-252.
M. F. a Alias, R. M. Aljarrah, H. K. H. Al-lamy, and K. a W. Adem. 2013. Investigation the Effect of Thickness on the Structural and Optical Properties of Nano ZnO Films Prepared by d . c Magnetron Sputtering. 2(7): 198-203.
B. R. Kumar and T. S. Rao. 2013. Atomic Force Microscopy Studies On Dc Reactive Magnetron Sputtered Zinc Aluminum Oxide Thin Films. 8(4): 1819-1827.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.