A QUASI STEADY STATE MODEL FOR FLASH PYROLYSIS OF BIOMASS IN A TRANSPORTED BED REACTOR

Authors

  • Olagoke Oladokun Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Arshad Ahmad Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Fadhzir Ahmad Kamaroddin Department of Chemical Engineering, Faculty of Chemical Engineering Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tuan Amran Tuan Abdullah Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Bemgba Bevan Nyakuma Centre of Hydrogen Energy, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v75.5183

Keywords:

Imperata cylindrica, Lalang, Speargrass, Modeling, Pyrolysis, Quasi steady state, Tar, Transported bed reactor

Abstract

n this work a quasi-steady state Lagrange multiphase model for biomass pyrolysis in a transported bed reactor was developed. Using biomass three components and lumped kinetic model and char - gas ratio in the thermochemical conversion of biomass to tar, gas and char. The transported bed reactor operated a batch-continuous operation with both biomass and sand (heat source) as feeder at the top of the reactor, while the volatile products were collected and rapidly condensed. The model developed considered the mass flow of the biomass, hot sand and sweeping gas (Nitrogen) in addition to the complex pyrolysis kinetic mechanism. In simulating the model, the calculation was split into two modular steps. The solid phase module was first solved and the results were consequently used in the gas phase module. The focus of the simulation study was on the yield of tar; with variation in biomass feed rate and temperature. The model predictions consistently showed for all simulations, that temperature above 479.5 oC was for tar production. It further predicted that increase in biomass feed rate does not significantly increase tar. The optimal biomass feed rate was 4.0 g/s which correspond to tar yield of 69.53 % and temperature of 480 oC. 

References

Mohammadi, M., G. Najafpour, H. Younesi, P. Lahijani, M. Uzir, A. Mohamed. 2011. Renew Sust Energ Rev. 15: 4255.

Liew, W. H., M. H. Hassim, D. K. S. Ng. 2014. J. Clean Prod. 71: 11.

Hayes, D. J. M. 2013. WIREs Energy Environ. 2: 304.

Bridgwater, A. V. 2012. Biomass Bioenergy. 38: 68.

Miller, R. S., J. Bellan. 1997. Combust. Sci. Technol. 126: 97.

Basu, P. Biomass Gasification and Pyrolysis Pratical Design and Theory Kidlngton, Oxford: Elsevier, 2010: 365.

Ahmed, S. I., A. Johari, H. Hashim, et al. 2014. Environ. Prog. Sustain. Energy. 34: 289

Sims, R., W. Mabee, J. Saddler, M. Taylor. 2010. Bioresour. Technol. 101: 1570.

Woli, K. P., M. B. David, J. Tsai, T.B. Voigt, R.G. Darmody, C.A. Mitchell. 2011. Biomass Bioenergy. 35: 2807.

Heaton, E. A., F. G. Dohleman, A. F. Miguez, et al. Miscanthus: A Promising Biomass Crop, In: Jean-Claude K., Michel D., eds. Advances in Botanical Research: Academic Press, 2010: 75.

Lemus, R., C. E. Brummer, K. J. Moore, N. E. Molstad, L. C. Burras, M.F. Baker. 2002. Biomass Bioenergy. 23: 433.

Yang, H., R. Yan, H. Chen, D. H. Lee, C. Zheng. 2007. Fuel. 86: 1781.

Floudas, C. A., J. A. Elia, R. C. Baliban. 2012. Comput. Chem. Eng. 41: 24.

Chikoye, D., V. Manyong, F. Ekeleme. 2000. Crop Protect. 19: 481.

Ramsey, C. L., S. Jose, D. L. Miller, et al. 2003. For. Ecol. Manage. 179: 195.

olzmueller, E., S. Jose. 2011. Biol. Invasions. 13: 435.

Anca-Couce, A., N. Zobel, H. A. Jakobsen. 2013. Fuel. 103: 773.

Xue, Q., T. J. Heindel, R. O. Fox. 2011. Chem. Eng. Sci. 66: 2440.

Di Blasi, C. 2008. Prog. Energy Combust. Sci. 34: 47.

Nyakuma, B. B., O. A. Oladokun, A. Johari, A. Ahmad, T. A. T. Abdullah. 2014. J. Teknologi. 69: 7

Bradbury, A. G. W., Y. Sakai, F. Shafizadeh. 1979. J. Appl. Polym. Sci. 23: 3271.

Sadighi, S., A. Ahmad, M. Rashidzadeh. 2010. Korean J. Chem. Eng. 27: 1099.

Liden, A. G., F. Berruti, D. S. Scott. 1988. Chem. Eng. Commun. 65: 207.

MATLAB. MATLAB R2013a, 2013.

Keshwani, D. R., J. J. Cheng. 2009. Bioresour. Technol. 100: 1515.

Vrije, T., G. Haas, G. Tan, E. Keijsers, P. Claassen. 2002. Int. J. Hydrogen Energy. 27: 1381

Azduwin, K., M. Ridzuan, S. Hafis, T. A. Tuan Amran. 2012. Int. J. Biol. Ecol. Environ. Sci. 1: 176

Babu, B. V., A. S. Chaurasia. 2003. Energy Convers. Manage. 44: 2135.

Lanzetta, M., C. Di Blasi. 1998. J. Anal. Appl. Pyrolysis. 44: 181.

Van de Velden, M., J. Baeyens, I. Boukis. 2008. Biomass Bioenergy. 32: 128.

Downloads

Issue

Section

Science and Engineering

How to Cite

A QUASI STEADY STATE MODEL FOR FLASH PYROLYSIS OF BIOMASS IN A TRANSPORTED BED REACTOR. (2015). Jurnal Teknologi (Sciences & Engineering), 75(6). https://doi.org/10.11113/jt.v75.5183