OPTIMIZATION OF ELECROSPINNING OF PVDF SCAFFOLDS FABRICATION USING RESPONSE SURFACE METHOD
DOI:
https://doi.org/10.11113/jt.v75.5193Keywords:
Poly(vinylidene fluoride), electrospinning, optimization, response surface methodology, central composite designAbstract
Poly(vinylidene fluoride) (PVDF) scaffolds were prepared via electrospinning. The response surface methodology (RSM) was used to optimize the parameters that influence the average fibre diameter. The objective is to produce fibres with small diameters. The factors considered for experimental design were the applied electric voltage, the PVDF solution concentration, and the distance between the needle tip and the collecting drum. The Central Composite Design (CCD) was used to generate the experimental design whilst the analysis of variance (ANOVA) was performed to obtain statistical validation of regression models and to study the interaction between input parameters. The optimum operating conditions that guaranteed PVDF scaffolds with small nanofibre diameter were in the voltage and concentration range of 16-20 kV and 10-14wt%.
References
Choi, S. S., Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, K. .S. Han. 2004. Electrospun PVDF Nanofiber Web as Polymer Electrolyte or Separator. Electrochim Acta. 50 (2–3): 339-343.
Choi, S. W., J. R. Kim, Y. R. Ahn, S. M. Jo, E. J. Cairns. 2007. Characterization of Electrospun PVDF Fiber-Based Polymer Electrolytes. Chemistry of Materials. 19: 104-115.
Gao, K., X. Hu, C. Dai, T. Yi. 2006. Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells. Materials Science and Engineering: B. 131:100-105.
Zhao, Z., J. Li, X. Yuan, X. Li, Y. Zhang, J. Sheng. 2005. Preparation and Properties of Electrospun Poly(vinylidene fluoride) Membranes. Journal of Applied Polymer Science. 97: 466-474.
Khayet, M., C. Y. Yeng, K. C Khulbe,. and T. Matsuura. 2002. Preparation and Characterization of Poly(vinylidene fluoride) Hollow Fiber Membranes for Ultrafiltration. Polymer. 43: 3879-3890.
Chabot, S., C. Roy, G. Chowdhury, T. Matsuura. 1997. Development of Poly(vinylidene fluoride) Hollow-Fiber Membranes for the Treatment of Water/Organic Vapor Mixtures. Journal of Applied Polymer Science. 65: 1263-1270.
Li, D. and Y. Xia. 2004. Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials. 16: 1151-1170.
Rutledge, G. C., S. V. Fridrikh. 2007. Formation of Fibers by Electrospinning. Advanced Drug Delivery Reviews. 59:1384-1391.
Reneker, D. H. and A. L. Yarin. 2008. Electrospinning Jets and Polymer Nanofibers. Polymer. 49: 2387-2425.
McClure, M. J., S. A. Sell, D. G. Simpson, B. H. Walpoth, and G. L. Bowlin. 2010. A Three-Layered Electrospun Matrix to Mimic Native Arterial Architecture Using Polycaprolactone, Elastin, And Collagen: A Preliminary Study. Acta Biomaterialia. 6(7): 2422–2433.
Li, X., Y. Huang, L. S. Zheng. H. Liu, X. Niu, J. Huang, F. Zhao, Y. Fan. 2013. Effect Of Substrate Stiffness on the Functions of Rat Bone Marrow And Adipose Tissue Derived Mesenchymal Stem Cells In Vitro. Journal of Biomedical Materials Research: A. 102(4):1092-101.
Rnjak-Kovacina, J., S. G. Wise, Z. Li, P. K. Maitz, C. J. Young, Y. Wang, A. S. Weiss. 2012. Electrospun synthetic human elastin: collagen composite scaffolds for dermal tissue engineering. Acta Biomaterialia. 8(10): 3714–3722.
Ramakrishna, S.; Fujihara, K.; Teo, W.E.; Yong, T.; Ma, Z.;Ramaseshan, R. Electrospun nanofibers: solving global issues. Mater.Today, 2006: 9, 40.
Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28, 325.
Liang, D., B. S. Hsiao, B. Chu. 2007. Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Advanced Drug Delivery Reviews. 59: 1392.
Sato, A., R. Wang, H. Ma, B. S. Hsiao, B. Chu. 2011. Novel Nanofibrous Scaffolds for Water Filtration with Bacteria and Virus Removal Capability, Journal of Electron Microscopy (Tokyo). 60(3): 201-209.
Reneker, D. H., A. L. Yarin, H. Fong, S. Koombhongse. 2000. Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning, Journal of Applied Physics 87: 4531-4547.
Zheng, J., A. He, J. Li, C. C. Han. 2007. Polymorphism Control of Poly(vinylidene fluoride) through Electrospinning. Macromolecular.Rapid Communications 28: 2159-2162.
Ero-Phillips, O., M. Jenkins and A. Stamboulis. 2012. Tailoring Crystallinity of Electrospun Plla Fibres by Control of Electrospinning Parameters. Polymers. 4(3): 1331-1348.
Nasir, M., H. Matsumoto, T. Danno, M. Minagawa, T. Irisawa, M. Shioya, A. Tanioka. 2006. Control of Diameter, Morphology, And Structure of PVDF Nanofiber Fabricated by Electrospray Deposition, Journal of Polymer Science B: Polymer Physics. 44: 779-786.
Deitzel, J. M., J. Kleinmeyer, D. Harris, N. C. B. Tan. 2001. The Effect of Processing Variables on The Morphology of Electrospun Nanofibers And Textiles. Polymer. 42: 261.
Ki, C. S., D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, Y. H. Park. 2005. Characterization of Gelatin Nanofiber Prepared from Gelatin-Formic Acid Solution, Polymer. 46: 5094.
Yördem, O. S., M. Papila, Y. Z. Menceloğlu, 2008. Effects of Electrospinning Parameters on Polyacrylonitrile Nanofiber Diameter: An Investigation by Response Surface Methodology, Material Design. 29: 34.
Uy, M., J. K. Telford, 2009. Optimization by Design of Experiment techniques. Aerospace Conference 2009 IEEE. 1(10): 7-14.
Khanlou, H. M., A. Sadollah, B. C. Ang, J. H. Kim, S. Talebian, A. Ghadimi. 2014. Prediction and Optimization of Electrospinning Parameters for Polymethyl Methacrylate Nanofiber Fabrication Using Response Surface Methodology and Artificial Neural Networks, Neural Computing and Applications. 1-11.
Akhnazarova, S. and V. Kafarov. 1982. Experimental Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow.
Morgan, E. 1991. Chemometrics, Experimental Design: Analytical Chemistry by Open Learning, Wiley, Chichester.
Montgomery, D. C. 2001. Design and Analysis of Experiments, John Wiley & Sons, New York
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.