TENSILE STRENGTH OF SINGLE CONTINUOUS FIBER EXTRACTED FROM MENGKUANG LEAVES

Authors

  • Muhammad Syahmi Hamizol Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia.
  • Puteri Sri Melor Megat-Yusoff* Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia.

DOI:

https://doi.org/10.11113/jt.v76.5521

Keywords:

Continuous cellulose fiber, extraction, chemical treatment, fiber strength

Abstract

The focus of this paper is to obtain a continuous cellulose fiber (CCF) from mengkuang leaves of the pandanus genus using chemical extraction process and to measure its tensile properties. The higher the concentration of sodium hydroxide (NaOH) and the longer soaking times employed during the alkaline treatment of the mengkuang leaves, the higher the cellulose content extracted. The highest tensile strength of 520 MPa was measured for single CCF treated with optimum extraction parameters of 2% NaOH for 60 minutes. Amount of cellulose content of the extracted fiber showed an inverse relationship with the fiber’s tensile strength. The removal of lignin and hemicellulose content during extraction process may have caused the reduction in the fiber’s tensile strength.

References

Ann Gnpta, A. K. 2008. Potential of bamboo in sustainable development. Asia Pacific Bus Rev. 4: 100-107.

McMullen, P. 1984. Fibre/resin composites for aircraft primary structures: a short history, 1936–1984. Composites. 15(3): 222-230.

Pandey, J. K., Nakagaito, A. N. and Takagi, H. 2013. Fabrication and applications of cellulose nanoparticle-based polymer composites. Polymer Engineering & Science. 53(1): 1-8.

Sindhu, K. A., Prasanth, R. and Thakur, V. K. 2014. Medical Applications of Cellulose and its Derivatives: Present and Future. in Nanocellulose Polymer Nanocomposites, ed: John Wiley & Sons, Inc., 437-477. Proceeding of SPIE on Color Imaging. 4300:199–207.

Sanadi, A. R., Caulfield, D. F., Jacobson, R. E. and Rowell, R. M. 1995. Renewable Agricultural Fibers as Reinforcing Fillers in Plastics: Mechanical Properties of Kenaf Fiber-Polypropylene Composites. Industrial & Engineering Chemistry Research. 34(5): 1889-1896.

Wambua, P., Ivens, J. and Verpoest, I. 2003. Natural fibres: can they replace glass in fibre reinforced plastics?. Composites Science and Technology. 63(9): 1259-1264.

Hojo, T., Xu, Z., Yang, Y. and Hamada, H. 2014. Tensile Properties of Bamboo, Jute and Kenaf Mat-reinforced Composite. Energy Procedia. 56: 72-79.

Mahjoub, R., Yatim, J. M., Mohd Sam, A. R. and Raftari, M. 2014. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites. Materials & Design. 64: 640-649.

Wang, H., Chang, R., Sheng, K. c., Adl, M. and Qian, X. q. 2008. Impact Response of Bamboo-Plastic Composites with the Properties of Bamboo and Polyvinylchloride (PVC). Journal of Bionic Engineering. 5: 28-33.

Yan, L., Chouw, N. and Yuan, X. 2012. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites. 31(6): 425-437.

Zakikhani, P., Zahari, R., Sultan, M. T. H. and Majid, D. L. 2014. Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design. 63: 820-828.

Thwe M. M. and Liao, K. 2002. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites - Part A: Applied Science and Manufacturing. 33(1): 43-52.

Ioelovich M. and Larina, E. 1999. Parameters of crystalline structure and their influence on the reactivity of cellulose I. Cellulose Chemistry and Technology. 33(1): 3-12.

Bledzki A. K. and Gassan, J. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science. 24(2): 221-274.

Aziz S. H. and Ansell, M. P. 2004. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – polyester resin matrix. Composites Science and Technology. 64(9): 1219-1230.

Giesen, W., Wulffraat, S., Zieren, M. and Scholten, L. 2007. Mangrove Guidebook for Southeast Asia. FAO & Wetlands International: RAP Publications.

Gassan J. and Bledzki, A. K. 1999. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Composites Science and Technology. 59(9): 1303-1309.

Gassan, J. 1997. Natural Fibre-reinforced plastics-Correlation Between Structure And Properties Of The Fibres And The Resultant Composite. Dissertation, Institute of Materials Engineering, University of Kassel, Kassel.

Mukherjee, A., Ganguly, P. and Sur, D. J. 1993. Structural mechanics of jute: The effects of hemicellulose or lignin removal. Journal of the Textile Institute Transactions. 84: 348-353.

Roy, M. M. 1953. J Text Inst. 44: T44.

Zeronian, S. H. 1985. Intracrystalline Swelling Of Cellulose. Chichester (UK): Ellis Horwood.

Mwaikambo L. Y. and Ansell, M. P. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science. 84(12): 2222-2234.

Pickering, K. L., Beckermann, G. W., Alam, S. N. and Foreman, N. J. 2007. Optimising industrial hemp fibre for composites. Composites Part A: Applied Science and Manufacturing. 38(2): 461-468.

Cai, M., Takagi, H., Nakagaito, A. N., Katoh, M., Ueki, T. Waterhouse, G. I. N. and et al. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products. 65: 27-35.

Nakano, T., Sugiyama, J. and Norimoto, M. 2000. Contractive Force and Transformation of Microfibril with Aqueous Sodium Hydroxide Solution for Wood. Holzforschung. 5(3): 315-320.

Nakano, T. 2010. Mechanism of microfibril contraction and anisotropic dimensional changes for cells in wood treated with aqueous NaOH solution. Cellulose. 17(4): 711-719.

Suriani, M. J., Hamdan, M. M., Sastra, H. Y. and Sapuan, S. M. 2007. Study of interfacial adhesion of tensile specimens of Arenga pinnata fiber reinforced composites. Multidiscipline Model Mater Struct. 3(2): 213-224.

Sastra, H. Y., Siregar, J. P., Sapuan, S. M., Leman, Z. and Hamdan, M. M.2005. Flexural properties of Arenga pinnata fiber reinforced epoxy composites. Am J Appl Sci. 21-2

Downloads

Published

2015-09-14

How to Cite

TENSILE STRENGTH OF SINGLE CONTINUOUS FIBER EXTRACTED FROM MENGKUANG LEAVES. (2015). Jurnal Teknologi, 76(3). https://doi.org/10.11113/jt.v76.5521