Penganggaran Kekardinalan Set Penyelesaian Persamaan Kongruen

Authors

  • Siti Hasana Sapar
  • Kamel Ariffin Mohd Atan

DOI:

https://doi.org/10.11113/jt.v36.564

Abstract

Katakan X = (x1, x2, ...., xn) suatu vektor dalam ruang Zn dengan Z menandakan gelanggang integer. Katakan q integer positif dan f suatu polinomial dalam X berpekalikan unsur dalam Z. Hasil tambah eksponen yang disekutukan dengan f ditakrifkan sebagai math_01.jpg yang dinilaikan bagi semmua nilai x di dalam set reja lengkap modulo q. Nilai S (f;q) adalah bersandar kepada penganggaran bilangan unsur |V| yang terdapat dalam set V = {X mod q | fx ? 0 mod q} dengan fx menandakan polinomial-polinomial terbitan separa f terhadap X = (x1, x2, ...., xn). Dalam makalah ini perbincangan kami ditumpukan kepada kaedah penganggaran |V| yang disekutukan dengan polinomial f dalam dua pemboleh ubah (x , y) berpekali integer. Perbincangan dimulakan dengan polinomial f yang linear dan seterusnya meningkat sehingga polinomial f berdarjah tiga. Pendekatan yang dilakukan ialah dengan menggunakan kaedah p-adic dan Polihedron Newton yang disekutukan dengan polinomial-polinomial terbabit. Kata kunci: penganggaran kekardinalan; persamaan kongruen; kaedah p-adic; kaedah polihedron Newton Let X = (x1, x2, ...., xn) be a vector in a space Zn with Z ring of integers and let q be a positive integer and f a polynomial in X with coefficients in Z. The exponential sum associated to f is defined as math_01.jpg , where the sum is taken over a complete set of residues modulo q. The value of S (f;q) depends on the estimation of the number |V|, the number of elements contained in the set V = {X mod q | fx ? 0 mod q} with fx as the partial derivative of f with respect to X = (x1, x2, ...., xn). This paper discusses the problem of determining the common zeroes of two variable polynomials in cases where overlapping occurs at vertices and line segments of indicator diagrams associated with second and third degree polynomials. Subsequently estimations for of an exponential sum for these polynomials are arrived at. The approach is done by using p-adic method and the Newton Polyhedron technique associated with these polynomials Key words: Cardinality estimation; congruence equation; p-adic method; newton polyhedron technique

Downloads

Published

2012-01-20

Issue

Section

Science and Engineering

How to Cite

Penganggaran Kekardinalan Set Penyelesaian Persamaan Kongruen. (2012). Jurnal Teknologi (Sciences & Engineering), 36(1), 13–40. https://doi.org/10.11113/jt.v36.564