ISOLATION OF NANOCELLULOSE FROM JATROPHA WASTE: AN OVERVIEW
DOI:
https://doi.org/10.11113/jt.v76.5712Keywords:
Isolation, jatropha waste, nanocellulose, nanofibrillated, nanocrystallineAbstract
Nanocellulose widely used as an additive to improve the quality of composite for medical appliances, electronic and many other applications. The structure can be found in a plant cell wall and established methods are needed for an isolation process. Biomass from plant is commonly selected for this process due to theirs abundance resources. Nanocellulose from jatropha plant will be thoroughly discussed in this paper where several isolation methods will be highlighted.
References
Cherian, B. M., Leão, A. L., De Souza, S. F., Costa, L. M. M., De Olyveira, G. M., Kottaisamy, M., Nagarajan, E. R. and Thomas, S. 2011. Cellulose Nanocomposites With Nanofibres Isolated From Pineapple Leaf Fibers For Medical Applications. Carbohydr. Polym. 86(4): 1790–1798.
Payen, A. 1838. Mémoire Sur La Composition Du Tissu Propre Des Plantes Et Du Ligneux. Comptes Rendus. 7: 1052–1056
Moon, R., Martini, A. and Nairn, J. 2011. Cellulose Nanomaterials Review: Structure, Properties And Nanocomposites. Soc. Rev. 40(7): 3941–3994.
Samir, M. A., Alloin, F. and Dufresne, A. 2005. Review Of Recent Research Into Cellulosic Whiskers, Their Properties And Their Application In Nanocomposite Field. Biomacromolecules. 612–626.
Bhatnagar, A. and Sain, M. 2005. Processing of Cellulose Nanofiber-reinforced Composites. J. Reinf. Plast. Compos. 24(12): 1259–1268.
Cherian, B. M., Pothan, L. A., Nguyen-Chung, T., Mennig, G., Kottaisamy, M. and Thomas, S. 2008. A Novel Method For The Synthesis Of Cellulose Nanofibril Whiskers From Banana Fibers And Characterization. Journal Of Agricultural And Food Chemistry. 56(14): 5617–5627.
Li, R., Fei, J., Cai, Y., Li, Y., Feng, J. and Yao, J. 2009. Cellulose Whiskers Extracted From Mulberry: A Novel Biomass Production. Carbohydr. Polym. 76(1): 94–99.
Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A. and Kottaisamy, M. 2010. Isolation Of Nanocellulose From Pineapple Leaf Fibres By Steam Explosion. Carbohydr. Polym. 81(3): 720–725.
Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O. and Pasquini, D. 2013. Extraction And Characterization Of Cellulose Nanocrystals From Corncob For Application As Reinforcing Agent In Nanocomposites. Ind. Crops Prod. 44: 427–436.
Lani, N. S., Ngadi, N., Johari, a. and Jusoh, M. 2014. Isolation , Characterization , and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites. J. Nanomater. 1–9.
Sricharoenchaikul, V. Marukatat, C. and Atong, D. 2007. Fuel Production From Physic Nut (Jatropha Curcas L.) Waste By Fixed-Bed Pyrolysis Process. Thail. J. 1–6..
Jiang, L.-Q., Fang, Z., Guo, F. and Yang, L. 2012. Production Of 2,3-Butanediol From Acid Hydrolysates Of Jatropha Hulls With Klebsiella Oxytoca. Bioresour. Technol. 107: 405–410.
Wever, D.-A. Z., Heeres, H. J. and Broekhuis, A. A. 2012. Characterization Of Physic Nut (Jatropha Curcas L.) Shells. Biomass and Bioenergy. 37: 177–187.
Vaithanomsat, P. and Apiwatanapiwat, W. 2009. Feasibility Study On Vanillin Production From Jatropha Curcas Stem Using Steam Explosion As A Pretreatment. Inter J Chem Biolo Engr. 839–842.
Singh, R., Vyas, D., Srivastava, N. and Narra, M. 2008. SPRERI Experience On Holistic Approach To Utilize All Parts Of Jatropha Curcas Fruit For Energy. Renew. Energy. 33: 1868–1873.
Dhanya, M., Gupta, N. and Joshi, H. 2009. Biogas Potentiality Of Agro-Wastes Jatropha Fruit Coat. Proc. World Acad. Sci. 432–436.
Nascimento, D. M., Almeida, J. S., Dias, A. F., Figueirêdo, M. C. B., Morais, J. P. S., Feitosa, J. P. a. and de F Rosa, M. 2014. A Novel Green Approach For The Preparation Of Cellulose Nanowhiskers From White Coir. Carbohydr. Polym. 110: 456–463.
Brinchi, L., Cotana, F., Fortunati, E. and Kenny, J. M. 2013. Production Of Nanocrystalline Cellulose From Lignocellulosic Biomass: Technology And Applications. Carbohydrate Polymers. 94(1): 154–169.
Herrick, F. W., Casebier, R. L. K., Hamilton, J. and Sandberg, K. R. 1983. Microfibrillated Cellulose: Morphology and Accessibility. J. Appl. Polym. Sci. Appl. Polym. Symp. 37: 797–813.
Turbak, A. F., Snyder, F. W. and Sandberg, K. R. 1983. Microfibrillated Cellulose, A New Cellulose Product: Properties, Uses, and Commercial Potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 37: 815–827.
Alemdar, A. and Sain, M. 2008. Isolation And Characterization Of Nanofibers From Agricultural Residues–Wheat Straw And Soy Hulls. Bioresour. Technol. 99: 1664–1671.
Habibi, Y. Lucia, L. a. and Rojas, O. J. 2010. Cellulose Nanocrystals: Chemistry, Self-Assembly, And Applications. Chem. Rev. 110(6): 3479–3500.
Wang, B. and Sain, M. 2007. Isolation Of Nanofibers From Soybean Source And Their Reinforcing Capability On Synthetic Polymers. 67: 2521–2527.
Pelissari, F., do P., Sobral, A. and Menegalli, F. 2014. Isolation And Characterization Of Cellulose Nanofibers From Banana Peels. Cellulose. 417–432.
Rosa, M. F., Medeiros, E. S., Malmonge, J. a., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J. and Imam, S. H. 2010. Cellulose Nanowhiskers From Coconut Husk Fibers: Effect Of Preparation Conditions On Their Thermal And Morphological Behavior. Carbohydr. Polym. 81(1): 83–92.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.