ADHESIVE CONTACT MODELLING BASED ON LENNARD-JONES FORCE LAW
DOI:
https://doi.org/10.11113/jt.v76.5784Keywords:
Asperity, atomic force microscopy, adhesion, Lennard-Jones and pull-off forceAbstract
At diminishing separations, the load carrying capacity of opposing rough surfaces is distributed among asperities across a smaller contact area as compared with the apparent contact area. An improved understanding on asperity interactions is therefore required in order to better predict the tribological behaviour of a rough surface contact. In this paper, based on Weir’s method for computing the work of adhesion, a simplistic adhesive contact model is proposed, applying the Lennard-Jones force law, to study an asperity pair interaction. Assuming that the tip represents an asperity, the numerical model is subsequently applied to simulate a Tungsten Carbide (WC) coated AFM tip indenting on a Diamond (111) surface. It was found that the simulated pull-off force agrees with the measured value by Enachescu et al for a WC AFM tip on a Diamond (111).
References
Chong, W. W. F., Teodorescu, M., and Rahnejat, H. 2013. Nanoscale Elastoplastic Adhesion Of Wet Asperities. Proc. IMechE Part J: J. Eng. Trib. 227(9):996–1010.
Heinrich, H. 1881. On The Contact Of Elastic Solids. J. Reine Angew. Math. 92(110):156–171.
Johnson, K. L., Kendal, K. l., and Roberts, A. D. 1971. Surface Energy And The Contact Of Elastic Solids. Proc. Roy Soc Lon. A. Math. & Phy Sci. 324(1558):301– 313.
Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. 1975. Effect Of Contact Deformations On The Adhesion Of Particles. J. Coll. & Int. Sci. 53(2): 314–326.
Tabor, D. 1977. Surface Forces And Surface Interactions. J. Coll. & Int. Sci. 58(1): 2–13.
Muller, V. M., Derjaguin, B. V., and Toporov, Y. P. 1983. On Two Methods Of Calculation Of The Force Of Sticking Of An Elastic Sphere To A Rigid Plane. Coll. & Surf. 7(3): 251–259.
Maugis, D. 1992. Adhesion Of Spheres: the JKR-DMT Transition Using A Dugdale Model. J. Coll. & Int. Sci. 150(1): 243–269.
Attard, P. and Parker, J. L. 1992. Deformation And Adhesion Of Elastic Bodies In Contact. Phys Rev A. 46(12): 7959–7971.
Greenwood, J. A. 1997. Adhesion Of Elastic Spheres. Proc. Roy. Soc. A: Math, Phy. & Eng. Sci. 453(1961): 1277–1297.
Feng, J. Q. 2001. Adhesive Contact Of Elastically Deformable Spheres: A Computational Study Of Pull-Off Force And Contact Radius. J Colloid Interface Sci. 238(2): 318–323.
Chong, W. W. F. 2013. A Numerical Model For Wet-Adhesive Line Contact. Procedia Eng. 68: 579– 585.
Weir, G. 2008. Implications From The Ratio Of Surface Tension To Bulk Modulus And Nearest Neighbour Distance, For Planar Surfaces. Proc. Roy. Soc. A: Math, Phy. & Eng. Sci. 464(2097): 2281–2292.
Enachescu, M., Van Den Oetelaar, R. J. A., Carpick, R. W., Ogletree, D. F., Flipse, C. F. J., Salmeron, and M. 1998. Atomic Force Microscopy Study Of An Ideally Hard Contact: The Diamond (111)/Tungsten Carbide Interface. Phy. Rev. Lett. 81(9): 1877.
Israelachvili, J. N. 2011. Intermolecular And Surface Forces: Revised Third Edition. Acad. Press.
Butt, H., Cappella, B., and Kappl, M. 2005. Force Measurements With The Atomic Force Microscope: Technique, Interpretation And Applications. Surf. Sci. Rep. 59(1): 1– 152.
Klein, C. A. 1992. Anisotropy Of Young’s Modulus And Poisson’s Ratio In Diamond. Mat. Res. Bull. 27(12): 1407–1414.
AZoNetwork. Tungsten carbide - An overview, October 2014.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.