ADHESIVE CONTACT MODELLING BASED ON LENNARD-JONES FORCE LAW

Authors

  • W.G. Lee Faculty of Engineering and the Environment, University of Southampton Malaysia Campus (USMC), Nusajaya, Johor, Malaysia
  • W.W.F. Chong Faculty of Engineering and the Environment, University of Southampton Malaysia Campus (USMC), Nusajaya, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v76.5784

Keywords:

Asperity, atomic force microscopy, adhesion, Lennard-Jones and pull-off force

Abstract

At diminishing separations, the load carrying capacity of opposing rough surfaces is distributed among asperities across a smaller contact area as compared with the apparent contact area. An improved understanding on asperity interactions is therefore required in order to better predict the tribological behaviour of a rough surface contact. In this paper, based on Weir’s method for computing the work of adhesion, a simplistic adhesive contact model is proposed, applying the Lennard-Jones force law, to study an asperity pair interaction. Assuming that the tip represents an asperity, the numerical model is subsequently applied to simulate a Tungsten Carbide (WC) coated AFM tip indenting on a Diamond (111) surface. It was found that the simulated pull-off force agrees with the measured value by Enachescu et al for a WC AFM tip on a Diamond (111).

References

Chong, W. W. F., Teodorescu, M., and Rahnejat, H. 2013. Nanoscale Elastoplastic Adhesion Of Wet Asperities. Proc. IMechE Part J: J. Eng. Trib. 227(9):996–1010.

Heinrich, H. 1881. On The Contact Of Elastic Solids. J. Reine Angew. Math. 92(110):156–171.

Johnson, K. L., Kendal, K. l., and Roberts, A. D. 1971. Surface Energy And The Contact Of Elastic Solids. Proc. Roy Soc Lon. A. Math. & Phy Sci. 324(1558):301– 313.

Derjaguin, B. V., Muller, V. M., and Toporov, Y. P. 1975. Effect Of Contact Deformations On The Adhesion Of Particles. J. Coll. & Int. Sci. 53(2): 314–326.

Tabor, D. 1977. Surface Forces And Surface Interactions. J. Coll. & Int. Sci. 58(1): 2–13.

Muller, V. M., Derjaguin, B. V., and Toporov, Y. P. 1983. On Two Methods Of Calculation Of The Force Of Sticking Of An Elastic Sphere To A Rigid Plane. Coll. & Surf. 7(3): 251–259.

Maugis, D. 1992. Adhesion Of Spheres: the JKR-DMT Transition Using A Dugdale Model. J. Coll. & Int. Sci. 150(1): 243–269.

Attard, P. and Parker, J. L. 1992. Deformation And Adhesion Of Elastic Bodies In Contact. Phys Rev A. 46(12): 7959–7971.

Greenwood, J. A. 1997. Adhesion Of Elastic Spheres. Proc. Roy. Soc. A: Math, Phy. & Eng. Sci. 453(1961): 1277–1297.

Feng, J. Q. 2001. Adhesive Contact Of Elastically Deformable Spheres: A Computational Study Of Pull-Off Force And Contact Radius. J Colloid Interface Sci. 238(2): 318–323.

Chong, W. W. F. 2013. A Numerical Model For Wet-Adhesive Line Contact. Procedia Eng. 68: 579– 585.

Weir, G. 2008. Implications From The Ratio Of Surface Tension To Bulk Modulus And Nearest Neighbour Distance, For Planar Surfaces. Proc. Roy. Soc. A: Math, Phy. & Eng. Sci. 464(2097): 2281–2292.

Enachescu, M., Van Den Oetelaar, R. J. A., Carpick, R. W., Ogletree, D. F., Flipse, C. F. J., Salmeron, and M. 1998. Atomic Force Microscopy Study Of An Ideally Hard Contact: The Diamond (111)/Tungsten Carbide Interface. Phy. Rev. Lett. 81(9): 1877.

Israelachvili, J. N. 2011. Intermolecular And Surface Forces: Revised Third Edition. Acad. Press.

Butt, H., Cappella, B., and Kappl, M. 2005. Force Measurements With The Atomic Force Microscope: Technique, Interpretation And Applications. Surf. Sci. Rep. 59(1): 1– 152.

Klein, C. A. 1992. Anisotropy Of Young’s Modulus And Poisson’s Ratio In Diamond. Mat. Res. Bull. 27(12): 1407–1414.

AZoNetwork. Tungsten carbide - An overview, October 2014.

Downloads

Published

2015-10-11

How to Cite

ADHESIVE CONTACT MODELLING BASED ON LENNARD-JONES FORCE LAW. (2015). Jurnal Teknologi (Sciences & Engineering), 76(10). https://doi.org/10.11113/jt.v76.5784