MICROWAVE PYROLYSIS ASSISTED WITH CARBON BASED ABSORBENT: AN OVERVIEW

Authors

  • Syarifah Nor Faizah Syed Abdul Rahman Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
  • Norazah Abd Rahman Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
  • Siti Shawalliah Idris Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
  • Noor Fitrah Abu Bakar Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia
  • Roslan Mokhtar Universiti Teknologi MARA Sabah, 88997 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/jt.v76.5786

Keywords:

Microwave, pyrolysis, microwave absorber, carbon, microwave pyrolysis

Abstract

Over recent years, there has been an explosive growth of interest in the development of novel gel-phase materials based on small molecules. It has been recognised that an effective gelator should possess functional groups that interact with each other via temporal associative forces. This process leads to the formation of supramolecular polymer-like structures, which then aggregated further hence, gelating the solvent. Supramolecular interactions between building blocks that enable gel formation include hydrogen bonds, interactions, solvatophobic effects and van der Waals forces.  

References

Salema, A. A. and Ani, F. N. 2012. Microwave-Assisted Pyrolysis Of Oil Palm Shell Biomass Using An Overhead Stirrer. Journal of Analytical and Applied Pyrolysis. 96: 162-172.

Domínguez, A., Fernández, Fidalgo, Y., Pis, B., J. J. and Menéndez, J. A. 2008. Bio-Syngas Production With Low Concentrations Of CO2 And CH4 From Microwave-Induced Pyrolysis Of Wet And Dried Sewage Sludge. Chemosphere. 70: 397-403.

Dong, Q. and Xiong, Y. 2014. Kinetics Study On Conventional And Microwave Pyrolysis Of Moso Bamboo. Bioresource Technology. 171: 127-131.

Zhao, X., Zhang, Song, J., Z., Liu, H., Li, L. and Ma, C. 2011. Microwave Pyrolysis Of Straw Bale And Energy Balance Analysis. Journal of Analytical and Applied Pyrolysis. 92: 43-49.

Huang, Y. F., Kuan, W. H., Lo, S. L. and Lin, C. F. 2010. Hydrogen-Rich Fuel Gas From Rice Straw Via Microwave-Induced Pyrolysis. Bioresource Technology. 101: 1968-1973.

Huang, Y. F., Kuan, W. H., Lo, S. L., and Lin, C. F. 2008. Total Recovery Of Resources And Energy From Rice Straw Using Microwave-Induced Pyrolysis. Bioresource Technology. 99: 8252-8258.

Borges, F. C., Du, Z., Xie, Q., Trierweiler, J. O., Cheng, Y., Wan, Y., Liu, Y., Zhu, R., Lin, X., Chen, P. and Ruan, R. 2014. Fast Microwave Assisted Pyrolysis Of Biomass Using Microwave Absorbent. Bioresource Technology. 156: 267-274.

Zhao, X., Wang, M., Liu, H., Li, L., Ma, C. and Song, Z. A Microwave Reactor For Characterization Of Pyrolyzed Biomass. 2012. Bioresource Technology. 104: 673-678.

Zhang, Z., Zhao, X., Kown, E. and Calstaldi, M. J. 2010. Experimental Research On Microwave Induced Thermal Decomposition Of Printed Circuit Board Wastes. 18th Annual North American Waste-to-Energy Conference (NAWTEC18). Orlando, Florida, USA.

Salema, A. A. and Ani, F. N. 2011. Microwave Induced Pyrolysis Of Oil Palm Biomass. Bioresource Technology. 102: 3388-3395.

Beneroso, D., Bermúdez, J. M., Arenillas, A. and Menéndez, J. A. 2014. Influence Of The Microwave Absorbent And Moisture Content On The Microwave Pyrolysis Of An Organic Municipal Solid Waste. Journal of Analytical and Applied Pyrolysis. 105: 234-240.

Abu bakar, Z., Salema, A. A. and Ani, F. N. 2013. A New Technique To Pyrolyse Biomass In A Microwave System: Effect of stirrer speed. Bioresource Technology.128: 578-585.

Bu, Q., Lei, H., Ren, S., Wang, L., Holladay, J., Q., Tang, Z. J. and Ruan, R. Phenol And Phenolics From Lignocellulosic Biomass By Catalytic Microwave Pyrolysis. Bioresource Technology.102: 7004-7007.

Zhang, J., Tian, Y., Zhu, J., Zuo, W. and Yin, L. 2014. Characterization Of Nitrogen Transformation During Microwave-Induced Pyrolysis Of Sewage Sludge. 105: 335-341.

Zuo, W., Tian, Y. and Ren, N. 2011. The Important Role Of Microwave Receptors In Bio-Fuel Production By Microwave-Induced Pyrolysis Of Sewage Sludge. Waste Management. 31: 1321-1326.

Tian, Y., Zuo, W. and Chen, D. 2011. Crystallization Evolution, Microstructure And Properties Of Sewage Sludge-Based Glass–Ceramics Prepared By Microwave Heating. Journal Of Hazardous Materials. 196: 370-379.

Fidalgo, B., Domínguez, A., Pis, J. J. and Menéndez, J. A. 2008. Microwave-Assisted Dry Reforming Of Methane," International Journal of Hydrogen Energy. 33: 4337-4344.

Fidalgo, B., Fernández, Y., Domínguez, A., Pis, J. J. and Menéndez, J. A. 2008. Microwave-Assisted Pyrolysis Of CH4/N2 Mixtures Over Activated Carbon. Journal of Analytical and Applied Pyrolysis. 82: 158-162.

Tian, Y., Zuo, W., Ren, Z. and Chen, D. 2011. Estimation Of A Novel Method To Produce Bio-Oil From Sewage Sludge By Microwave Pyrolysis With The Consideration Of Efficiency And Safety. Bioresource Technology. 102: 2053-2061.

Chemat, F. and Poux, M. 2001. Microwave Assisted Pyrolysis Of Urea Supported On Graphite Under Solvent-Free Conditions. Tetrahedron Letters. 42: 3693-3695.

Downloads

Published

2015-10-11

How to Cite

MICROWAVE PYROLYSIS ASSISTED WITH CARBON BASED ABSORBENT: AN OVERVIEW. (2015). Jurnal Teknologi, 76(10). https://doi.org/10.11113/jt.v76.5786