A COMBINED SENSITIVITY ANALYSIS OF SEVEN POTENTIAL EVAPOTRANSPIRATION MODELS
DOI:
https://doi.org/10.11113/jt.v76.5953Keywords:
Potential evapotranspiration model, sensitivity analysis, graphical approach, partial derivatives, outlier detectionAbstract
Graphical and partial derivatives approaches were used to analyse the sensitivity of variables for the seven potential evapotranspiration models (PET). The models, which have different data requirements and structures, are Hamon, Hargreaves-Samani, Jensen-Haise, Makkink, Turc, Priestley-Taylor, and Penman. Julian date based mean imputation was used to fill the missing data. Tukey's outlier detection method was employed before estimating the PET. Partial derivative approach was conducted by combining the absolute values of the error term through a root mean square and changing to the finite difference form. According to partial derivatives analysis, Hamon is the most sensitive model followed by Penman, Priestley-Taylor, Hargreaves-Samani, Jensen-Haise, Turc, and Makkink models. Temperature is more sensitive meteorological input in Jensen-Haise and Makkink models while solar radiation is more sensitive ones in Turc and Priestley-Taylor models. Wind speed and relative humidity are the most and less sensitive ones in Penman model. Graphical analysis showed that Hamon was the most sensitive PET model with respect to the temperature while Priestley-Taylor was the one with respect to the solar radiation. Turc is the less sensitive PET model with respect to temperature and solar radiation. Overall, graphical method gives clearly comparison for sensitivity of PET. However, it does not indicate its sensitivity values compared to partial derivative approach.
References
El-Baroudy, I., Elshorbagy, A., Carey, S., et al. 2010. Comparison of Three Data-driven Techniques in Modelling The Evapotranspiration Process. Journal of Hydroinformatics. 12: 365-379.
Ladlani, I., Houichi, L., Djemili, L., et al. 2012. Modeling Daily Reference Evapotranspiration (ET0) in the North of Algeria Using Generalized Regression Neural Networks (GRNN) and Radial Basis Function Neural Networks (RBFNN): A Comparative Study. Meteorology and Atmospheric Physics. 118: 163-178.
Fisher, D. K., III HCP. 2013. Evaluation of Alternative Methods for Estimating Reference Evapotranspiration. Agricultural Sciences. 4: 51-60.
Tabari, H., Hosseinzadeh Talaee, P., Some’e, B. S. 2013. Spatial Modelling of Reference Evapotranspiration Using Adjusted Blaney-Criddle Equation in an Arid Environment. Hydrological Sciences Journal. 58: 408-420.
Ali, M. H., Shui, L. T. 2009. Potential Evapotranspiration Model for Muda Irrigation Project, Malaysia. Water Resources Management. 23: 57-69.
Huo, Z., Dai, X., Feng, S., et al. 2013. Effect of Climate Change on Reference Evapotranspiration and Aridity Index in Arid Region Of China. Journal of Hydrology. 24-34.
Grismer, M. E., Orang, M., Snyder, R., Matyac, R. 2002. Pan Evaporation to Reference Evapotranspiration Conversion Methods. Journal of Irrigation and Drainage Engineering. 128: 180-184.
Lu, J., Sun, G., McNulty, S. G., Amatya, D. M. 2005. A Comparison of Six Potential Evapotranspiration Methods for Regional Use in the Southeastern United States. JAWRA Journal of the American Water Resources Association. 41: 621-633.
Le, T. P. Q., Seidler, C., Kändler, M., Tran, T. B. N. 2012. Proposed Methods for Potential Evapotranspiration Calculation of the Red River Basin (North Vietnam). Hydrological Processes. 26: 2782-2790.
McKenney, M. S., Rosenberg, N. J. 1993. Sensitivity of Some Potential Evapotranspiration Estimation Methods to Climate Change. Agricultural and Forest Meteorology. 64: 81-110.
Lee, T. S., Najim, M. M., Aminul, M. H. 2004. Estimating evapotranspiration of irrigated rice at the West Coast of the Peninsular of Malaysia. Journal of Applied Irrigation Science. 39: 103-117.
Kisi, O. 2013. Comparison of Different Empirical Methods for Estimating Daily Reference Evapotranspiration in Mediterranean Climate. Journal of Irrigation and Drainage Engineering. doi: 10.1061/(ASCE)IR.1943-4774.0000664.
Heydari, M. M., Heydari, M. 2013. Calibration of Hargreaves–Samani Equation for Estimating Reference Evapotranspiration in Semiarid and Arid Regions. Archives of Agronomy and Soil Science. 1–19. doi: 10.1080/03650340.2013.808740
Suleiman, A. A., Hoogenboom, G. 2007. Comparison of Priestley-Taylor and FAO-56 Penman-Monteith for Daily Reference Evapotranspiration Estimation in Georgia. Journal of Irrigation and Drainage Engineering 133: 175-182.
Gocic, M. and Trajkovic, S. 2014. Analysis of Trends in Reference Evapotranspiration Data in a Humid Climate. Hydrological Sciences Journal. 59(1): 165-180.
Ali, M. H., Shui, L. T., Yan, K. C., Eloubaidy, A. F. 2000. Modelling Evaporation and Evapotranspiration under Temperature Change in Malaysia. Pertanika Journal of Science and Technology. 8: 191-204.
Lee, T. S., Haque, M. A., Najim, M. M. M. 2005. Scheduling the Cropping Calendar in Wet-Seeded Rice Schemes in Malaysia. Agricultural Water Management. 71: 71-84. doi: 10.1016/j.agwat.2004.06.007.
Lee, T. S., Haque, M. A., Huang, Y. F. 2006. Modeling Water Balance Components in Rice Field Irrigation. The Institution of Engineers, Malaysia. 67: 22-25.
Amin, M. S. M., Rowshon, M. K., Aimrun, W. 2011. Paddy Water Management for Precision Farming of Rice. In: Uhlig U (ed). Current Issues of Water Management. InTech. 107-142.
Rowshon, M. K., Amin, M. S. M., Lee, T. S., Shariff, A. R. M. 2009. GIS-Integrated Rice Irrigation Management Information System for a River-Fed Scheme. Water Resources Management. 23: 2841-2866. doi: 10.1007/s11269-009-9412-7.
Tukimat, N. N. A., Harun, S., Shahid, S. 2012. Comparison of Different Methods in Estimating Potential Evapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS). 113: 77-85.
Ambas, V. T., Baltas, E. 2012. Sensitivity Analysis of Different Evapotranspiration Methods Using a New Sensitivity Coefficient. Global NEST J. 14(3): 335-343.
Bakhtiari, B., Liaghat, A. M. 2011. Seasonal Sensitivity Analysis for Climatic Variables of ASCE-Penman–Monteith Model in a Semi-Arid Climate. J. Agric. Sci. Technol. 13: 1135-1145.
Beven, K. 1979. A Sensitivity Analysis of the Penman–Monteith Actual Evapotranspiration Estimates. J. Hydrol. 44(3-4): 169-190.
Coleman, G., DeCoursey, D. G. 1976. Sensitivity and Model Variance Analysis Applied to Some Evaporation and Evapotranspiration Models. Water Resour. Res. 12(5): 873-879.
Eslamian, S., Khordadi, M. J., Abedi-Koupai, J. 2011. Effects of Variations in Climatic Parameters on Evapotranspiration in the Arid and Semi-Arid Regions. Global Planet. Change. 78(3–4): 188-194.
Gong, L., Xu, C.-Y., Chen, D., Halldin, S., Chen, Y. D. 2006. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key Climatic Variables in the Changjiang (Yangtze River) Basin. J. Hydrol. 329(3-4): 620-629.
Hupet, F., Vanclooster, M. 2001. Effect of the Sampling Frequency of Meteorological Variables on the Estimation of the Reference Evapotranspiration. J. Hydrol. 243(3-4): 192-204.
Irmak, S., Martin, D., Irmak, A., Howell, T. 2006. Sensitivity Analyses and Sensitivity Coefficients of Standardized Daily ASCE-Penman–Monteith Equation. J. Irrig. Drain. Eng. 132(6): 564-578.
Ley, T. W., Hill, R. W., Jensen, D. T. 1994a. Errors in Penman–Wright Alfalfa Reference Evapotranspiration Estimates: I. Model Sensitivity Analysis. Trans. ASABE. 37(6): 1853-1861.
Liang, L., Li, L., Zhang, L., Li, J., Li, B. 2008. Sensitivity of Penman–Monteith Reference Crop Evapotranspiration in Tao’er River Basin Of Northeastern China. Chin. Geogr. Sci. 18(4): 340-347.
Rana, G., Katerji, N., 1998. A Measurement based Sensitivity Analysis of the Penman–Monteith Actual Evapotranspiration Model for Crops Of Different Height and in Contrasting Water Status. Theor. Appl. Climatol. 60(1): 141-149.
Brutsaert, W. 1982. Energy Budget and Related Methods. Evaporation into the Atmosphere: Theory, History and Applications. D. Reidel Publishing Company. 215-217.
Hamon, W. R. 1963. Computation of Direct Runoff Amounts From Storm Rainfall. Int Assoc Sci Hydrol. 63: 52-62.
Hargreaves, G. H., Samani, Z. A. 1985. Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture. 1: 96-99.
Turc, L. 1961. Evaluation des besoins en eau d’irrigation, {é}vapotranspiration potentielle. Ann agron. 12: 13-49.
Makkink, G. F. 1957. Testing the Penman Formula by Means of Lysimeters. J Inst Water Eng. 11: 277-288.
Priestley, C. H. B., Taylor, R. J. 1972. On the Assessment of Surface Heat Flux snd Evaporation Using Large-Scale Parameters. Monthly Weather Review. 100: 81-92.
Brutsaert, W. 2005. Hydrology: An Introduction. 130-131.
Thirukumaran, S. & A, S. 2015. An Alternate Imputation Technique of a Mean Method for Missing Values and Comparative Study with Neighbor Methods. International Journal of Applied Engineering Research. 10: 9969-9982.
Ghandhi, S. K. and Principles, V. F. 1983. John wiley & sons. New York. 422-424.
Jordan, K. A., R. O. Kuehl, J. I. Sewell. 1991. Planning the Experiment. In: Henry, Z. A., G. C. Zoerb, G. S. Birth (Editors). Instrumentation and Measurement for Environmental Sciences. 3rd Edition. American Society of Agricultural Engineering (ASAE), USA. 1-01–1-05.
Legates, D. R., McCabe, G. J. 1999. Evaluating the Use of “Goodness-Of-Fit†Measures in Hydrologic and Hydroclimatic Model Validation. Water Resources Research. 35: 233-241.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.