LEARNING STIMULUS-STIMULUS ASSOCIATION IN SPATIO-TEMPORAL NEURAL NETWORKS

Authors

  • N. Yusoff School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
  • F. Kabir Ahmad School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
  • N. ChePa School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
  • A. Ab Aziz School of Computing, College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6126

Keywords:

Associative learning, stimulus-stimulus association, spatio-temporal neural networks, spike-timing dependent plasticity

Abstract

We propose a stimulus-stimulus association learning by coupling firing rate and precise spike timing encoding for spatio-temporal neural networks. We simulate a generic recurrent network with random and sparse connectivity consisting of Izhikevich spiking neurons. The magnitude of weight adjustment in learning is dependent on pre- and postsynaptic spikes based on their spikes count and time correlation. As a result of learning, synchronisation of activity among inter- and intra-subpopulation neurons demonstrates association between two stimuli. The associations show in spill-over of activity between the two stimuli involved. 

References

Dayan, P., and L. F. Abbot. 2005. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT.

Sakai, K., and Y. Miyashita1991. Neural Organization For The Long Term Memory Of Paired Associates. Nature. 354: 152–155.

Erickson, C. A., and R. Desimone. 1999. Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning. Journal of Neuroscience. 19(23): 10404–10416.

Naya, Y., M. Yoshida, and Y. Miyashita. 2003. Forward Processing Of Long Term Associative Memory In Monkey Inferotemporal Cortex. J. Neurosci. 23: 2861–2871.

Tulving, E., D. L. Schacter, and H. A. Stark. 1982. Priming Effects in Word Fragment Completion are independent of Recognition Memory. Journal of Experimental Psychology: Learning, Memory and Cognition. 8(4):336–342.

Filippova, M. G. 2011. Does Unconscious Information Affect Cognitive Activity?: A Study Using Experimental Priming. The Spanish Journal of Psychology. 14(1):20–36.

Schacter, D. L. 1992. Priming And Multiple Memory Systems: Perceptual Mechanisms Of Implicit Memory. Journal of Cognitive Neuroscience. 4(3):244–256.

Abeles, M. 1991. Corticonics. New York: Cambridge University Press.

Braitenberg, V. and A. Schütz. 1991. Anatomy of the Cortex. Berlin: Springer-Verlag.

Izhikevich, E. M. 2003. Simple Model of Spiking Neurons. IEEE Trans. Neural Networks. 14(6):1569–1572.

Brunel, N., and F. Lavigne. 2009. Semantic Priming in a Cortical Network Model. Journal of Cognitive Neuroscience. 21(12):2300–2319.

Mongillo, G., D. J. Amit, and N. Brunel. 2003. Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. European Journal of Neuroscience. 18:2011–2024.

Bi, G. Q., and M. M. Poo. 1998. Synaptic Modifications In Cultured Hippocampal Neurons: Dependence On Spike Timing, Synaptic Strength And Postsynaptic Cell Type. J. Neurosci. 18:10464–10472.

Gerstner, W., and W. Kistler. 2002. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: University Press.

Paugam-Moisy, H., R. Martinez, and S. Bengio. 2008. Delay Learning And Polychnization For Reservoir Computing. Neurocomputing. 71(7-9): 1143–1158.

Bloom, F., C. A. Nelson, and A. Lazerson. 2001. Brain, Mind, and Behaviour, 3rd ed. US: Educational Broadcasting Corporation.

Izhikevich, E. M. 2006. Polychronization: Computation with Spikes. Neural Computation. 18:245–282.

Purves, D., G. A. Augustine, D. Fitzpatrick, W. Hall, A-S. LaMantia, J. O. McNamara, and S. M. Williams. 2008. Neuroscience, 4th ed. Sunderland, MA : Sinauer Associates.

Swiercz, W., K. J. Cios, K. Stanley, L. Kurgan, F. Accurso, and S. Sagel. 2006. A New Synaptic Plasticity Rule for Networks of Spiking Neurons. IEEE Trans. Neural Networks. 17(1):94–105.

Crick, F. 1989. The Recent Excitement About Neural Networks. Nature. 337:129–132.

Zipser, D., and R. A. Andersen. 1988. A Back-Propagation Programmed Network That Simulates Response Properties Of A Subset Of Posterior Parietal Neurons. Nature. 331:679–684.

Brunel, N., and X. J. Wang. 2001. Effects Of Neuromodulation In A Cortical Network Model Of Object Working Memory Dominated By Recurrent Inhibition. J. Comput. Neurosci. 11:63-85.

Fuster, J. M., and J. P. Jervey. 1981. Inferotemporal Neurons Distinguish And Retain Behaviourally Relevant Features Of Visual Stimuli. Science. 212: 952-955.

Kubota, K., and H. Niki. 1971. Prefrontal Cortical Unit Activity And Delayed Alte Rnation Performance In Monkeys. J. Neurophysiol. 34:337-347.

Miyashita, Y., and H. S. Chang. 1988. Neuronal Correlate Of Pictorial Short-Term Memory In The Primate Temporal Cortex. Nature. 331:68-70.

Wilson, F. A. W., S. P. O. Scalaidhe, and P. S. Goldman-Rakic. 1993. Dissociation Of Object And Spatial Processing Domains In Primate Prefrontal Cortex. Science. 260:1955-1958.

Glackin, C., L. McDaid, L. Maguire, and S. Heather. 2008. Implementing Fuzzy Reasoning on a Spiking Neural Network. In V. Kurkova et al. (Eds.), ICANN 2008, Part II, LNCS. 5164:258-267.

Hopfield, J. J. 1995. Pattern Recognition Computation Using Action Potential Timing For Stimulus Representation. Nature. 376:33-36.

Maass, W. 1997. Networks Of Spiking Neurons: The Third Generation Of Neural Network Models. Neural Networks. 10(9):1659-1671.

Ponulak, F., and A. Kasinski. 2010. Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting. Neural Computation. 22:467-510.

Van Rullen, R., R. Guyonneau, and S. J. Thorpe. 2005. Spike times make sense. TRENDS in Neurosci. 28(1):1-4.

Erickson, C.A., and R. Desimone. 1999. Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning. Journal of Neuroscience. 19(23):10404-10416.

Izhikevich, E. M. 2004. Which model to use for cortical spiking neurons. IEEE Trans. Neural Networks. 15(5):1063-1070.

Domingues, M., S. Becker, I. Bruce, and H.A. Read. 2006. Spiking Neuron Model Of Cortical Correlates Of Sensorineural Hearing Loss: Spontaneous Firing, Synchrony, And Tinnitus. Neural Comput. 18(12):2942-2958.

Eckhorn, R., R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H.J. Reitboeck. 1988. Coherent Oscillations: A Mechanism Of Feature Linking In The Visual Cortex? Multiple Electrode And Correlation Analyses In The Cat. Biol Cybern. 60(2):121–130.

Wang, J., A. Belatreche, L. Maguire, and T. M. McGinnity. 2014. An Online Supervised Learning Method For Spiking Neural Networks With Adaptive Structure. Neurocomputing. 144:526-536.

Litt, R. A., and K. Nation. 2014. The Nature And Specificity Of Paired Associate Learning Deficits In Children With Dyslexia. Journal of Memory and Language. 71(1):71-88.

Iakymchuk, T., A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-Mompeán, and J.V. Francés-Víllora. 2015. Simplified Spiking Neural Network Architecture And STDP Learning Algorithm Applied To Image Classification. EURASIP Journal on Image and Video Processing.4:1-11

Downloads

Published

2015-11-05

How to Cite

LEARNING STIMULUS-STIMULUS ASSOCIATION IN SPATIO-TEMPORAL NEURAL NETWORKS. (2015). Jurnal Teknologi (Sciences & Engineering), 77(5). https://doi.org/10.11113/jt.v77.6126