LEARNING STIMULUS-STIMULUS ASSOCIATION IN SPATIO-TEMPORAL NEURAL NETWORKS
DOI:
https://doi.org/10.11113/jt.v77.6126Keywords:
Associative learning, stimulus-stimulus association, spatio-temporal neural networks, spike-timing dependent plasticityAbstract
We propose a stimulus-stimulus association learning by coupling firing rate and precise spike timing encoding for spatio-temporal neural networks. We simulate a generic recurrent network with random and sparse connectivity consisting of Izhikevich spiking neurons. The magnitude of weight adjustment in learning is dependent on pre- and postsynaptic spikes based on their spikes count and time correlation. As a result of learning, synchronisation of activity among inter- and intra-subpopulation neurons demonstrates association between two stimuli. The associations show in spill-over of activity between the two stimuli involved.Â
References
Dayan, P., and L. F. Abbot. 2005. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT.
Sakai, K., and Y. Miyashita1991. Neural Organization For The Long Term Memory Of Paired Associates. Nature. 354: 152–155.
Erickson, C. A., and R. Desimone. 1999. Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning. Journal of Neuroscience. 19(23): 10404–10416.
Naya, Y., M. Yoshida, and Y. Miyashita. 2003. Forward Processing Of Long Term Associative Memory In Monkey Inferotemporal Cortex. J. Neurosci. 23: 2861–2871.
Tulving, E., D. L. Schacter, and H. A. Stark. 1982. Priming Effects in Word Fragment Completion are independent of Recognition Memory. Journal of Experimental Psychology: Learning, Memory and Cognition. 8(4):336–342.
Filippova, M. G. 2011. Does Unconscious Information Affect Cognitive Activity?: A Study Using Experimental Priming. The Spanish Journal of Psychology. 14(1):20–36.
Schacter, D. L. 1992. Priming And Multiple Memory Systems: Perceptual Mechanisms Of Implicit Memory. Journal of Cognitive Neuroscience. 4(3):244–256.
Abeles, M. 1991. Corticonics. New York: Cambridge University Press.
Braitenberg, V. and A. Schütz. 1991. Anatomy of the Cortex. Berlin: Springer-Verlag.
Izhikevich, E. M. 2003. Simple Model of Spiking Neurons. IEEE Trans. Neural Networks. 14(6):1569–1572.
Brunel, N., and F. Lavigne. 2009. Semantic Priming in a Cortical Network Model. Journal of Cognitive Neuroscience. 21(12):2300–2319.
Mongillo, G., D. J. Amit, and N. Brunel. 2003. Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network. European Journal of Neuroscience. 18:2011–2024.
Bi, G. Q., and M. M. Poo. 1998. Synaptic Modifications In Cultured Hippocampal Neurons: Dependence On Spike Timing, Synaptic Strength And Postsynaptic Cell Type. J. Neurosci. 18:10464–10472.
Gerstner, W., and W. Kistler. 2002. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge: University Press.
Paugam-Moisy, H., R. Martinez, and S. Bengio. 2008. Delay Learning And Polychnization For Reservoir Computing. Neurocomputing. 71(7-9): 1143–1158.
Bloom, F., C. A. Nelson, and A. Lazerson. 2001. Brain, Mind, and Behaviour, 3rd ed. US: Educational Broadcasting Corporation.
Izhikevich, E. M. 2006. Polychronization: Computation with Spikes. Neural Computation. 18:245–282.
Purves, D., G. A. Augustine, D. Fitzpatrick, W. Hall, A-S. LaMantia, J. O. McNamara, and S. M. Williams. 2008. Neuroscience, 4th ed. Sunderland, MA : Sinauer Associates.
Swiercz, W., K. J. Cios, K. Stanley, L. Kurgan, F. Accurso, and S. Sagel. 2006. A New Synaptic Plasticity Rule for Networks of Spiking Neurons. IEEE Trans. Neural Networks. 17(1):94–105.
Crick, F. 1989. The Recent Excitement About Neural Networks. Nature. 337:129–132.
Zipser, D., and R. A. Andersen. 1988. A Back-Propagation Programmed Network That Simulates Response Properties Of A Subset Of Posterior Parietal Neurons. Nature. 331:679–684.
Brunel, N., and X. J. Wang. 2001. Effects Of Neuromodulation In A Cortical Network Model Of Object Working Memory Dominated By Recurrent Inhibition. J. Comput. Neurosci. 11:63-85.
Fuster, J. M., and J. P. Jervey. 1981. Inferotemporal Neurons Distinguish And Retain Behaviourally Relevant Features Of Visual Stimuli. Science. 212: 952-955.
Kubota, K., and H. Niki. 1971. Prefrontal Cortical Unit Activity And Delayed Alte Rnation Performance In Monkeys. J. Neurophysiol. 34:337-347.
Miyashita, Y., and H. S. Chang. 1988. Neuronal Correlate Of Pictorial Short-Term Memory In The Primate Temporal Cortex. Nature. 331:68-70.
Wilson, F. A. W., S. P. O. Scalaidhe, and P. S. Goldman-Rakic. 1993. Dissociation Of Object And Spatial Processing Domains In Primate Prefrontal Cortex. Science. 260:1955-1958.
Glackin, C., L. McDaid, L. Maguire, and S. Heather. 2008. Implementing Fuzzy Reasoning on a Spiking Neural Network. In V. Kurkova et al. (Eds.), ICANN 2008, Part II, LNCS. 5164:258-267.
Hopfield, J. J. 1995. Pattern Recognition Computation Using Action Potential Timing For Stimulus Representation. Nature. 376:33-36.
Maass, W. 1997. Networks Of Spiking Neurons: The Third Generation Of Neural Network Models. Neural Networks. 10(9):1659-1671.
Ponulak, F., and A. Kasinski. 2010. Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting. Neural Computation. 22:467-510.
Van Rullen, R., R. Guyonneau, and S. J. Thorpe. 2005. Spike times make sense. TRENDS in Neurosci. 28(1):1-4.
Erickson, C.A., and R. Desimone. 1999. Responses of Macaque Perirhinal Neurons during and after Visual Stimulus Association Learning. Journal of Neuroscience. 19(23):10404-10416.
Izhikevich, E. M. 2004. Which model to use for cortical spiking neurons. IEEE Trans. Neural Networks. 15(5):1063-1070.
Domingues, M., S. Becker, I. Bruce, and H.A. Read. 2006. Spiking Neuron Model Of Cortical Correlates Of Sensorineural Hearing Loss: Spontaneous Firing, Synchrony, And Tinnitus. Neural Comput. 18(12):2942-2958.
Eckhorn, R., R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H.J. Reitboeck. 1988. Coherent Oscillations: A Mechanism Of Feature Linking In The Visual Cortex? Multiple Electrode And Correlation Analyses In The Cat. Biol Cybern. 60(2):121–130.
Wang, J., A. Belatreche, L. Maguire, and T. M. McGinnity. 2014. An Online Supervised Learning Method For Spiking Neural Networks With Adaptive Structure. Neurocomputing. 144:526-536.
Litt, R. A., and K. Nation. 2014. The Nature And Specificity Of Paired Associate Learning Deficits In Children With Dyslexia. Journal of Memory and Language. 71(1):71-88.
Iakymchuk, T., A. Rosado-Muñoz, J. F. Guerrero-MartÃnez, M. Bataller-Mompeán, and J.V. Francés-VÃllora. 2015. Simplified Spiking Neural Network Architecture And STDP Learning Algorithm Applied To Image Classification. EURASIP Journal on Image and Video Processing.4:1-11
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.