A PRELIMINARY STUDY ON DETECTION OF LUNG CANCER CELLS BASED ON VOLATILE ORGANIC COMPOUNDS SENSING USING ELECTRONIC NOSE
DOI:
https://doi.org/10.11113/jt.v77.6250Keywords:
E-Nose, Volatile Organic Compounds (VOCS), in-vitro, lung cancer cells, Probabilistic Neural Network (PNN)Abstract
 This paper proposes a preliminary investigation on the volatile production patterns generated from three sets of in-vitro cancerous cell samples of headspace that contains volatile organic compounds using the electronic nose system.  A commercialized electronic nose consisting of 32 conducting polymer sensors (Cyranose 320) is used to analyze the three classes of signals which are lung cancer cells grown in media, breast cancer cells grown in media and the blank media (without cells). Neural Network (PNN) based classification technique is applied to investigate the performance of an electronic nose (E-nose) system for cancerous lung cell classification. Â
References
Ferlay.J, Soerjomataram.J, Ervik.M, Dikshit.R, Eser.S, Mathers.C, Rebelo.M, Parkin.DM, Forman.D, and Bray.F. 2013. Cancer Incidence and Mortality Worldwide: IARC Cancer Base GLOBOCAN 2012 Cancer Incidence and Mortality Worldwide: IARC Cancer Base. (11)11.
M. Kimman, R. Norman, S. Jan, D. Kingston, and M. Woodward. 2012. The Burden of Cancer in Member Countries of the Association of Southeast Asian Nations (ASEAN). Asian Pacific J. Cancer Prev. 13(2): 411–420.
C. Brunner, W. Szymczak, V. Höllriegl, S. Mörtl, H. Oelmez, a Bergner, R. M. Huber, C.Hoeschen, and U.Oeh. 2014. Discrimination Of Cancerous And Non-Cancerous Cell Lines By Headspace-Analysis With PTR-MS. Anal. Bioanal. Chem. (397)6: 2315–2324.
U. Kalluri, M. Naiker, and M. A Myers. 2014. Cell Culture Metabolomics In The Diagnosis Of Lung Cancer-The Influence Of Cell Culture Conditions. J. Breath Res. (8)2: 1-10.
R. Fend, A. H. J. Kolk, C. Bessant, P. Buijtels, P. R. Klatser, and A. C. Woodman, 2006. Prospects For Clinical Application Of Electronic-Nose Technology To Early Detection Of Mycobacterium Tuberculosis In Culture And Sputum. J. Clin. Microbiol. (44) 6: 2039–2045.
G. Peng, M. Hakim, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, a Kuten, U. Tisch, and H. Haick, 2010. Detection Of Lung, Breast, Colorectal, And Prostate Cancers From Exhaled Breath Using A Single Array Of Nanosensors. Br. J. Cancer (103)4: 542–551.
D. A. P. Daniel, K. Thangavel, and R. S. C. Boss. 2012. A Review Of Early Detection Of Cancers Using Breath Analysis. Int. Conf. Pattern Recognition, Informatics Med. Eng. Mar. 433–438.
R. Thriumani, A. Zakaria, M. I. Omar, A. H. Adom, A. Y. M. Sharaff, L. M. Kamaruddin, N. Yusuf, and K. M. Helmy. 2014. Review On Exhaled Volatile Organic Compounds From Lung Cancer And Advances Of E-Nose As Non-Invasive Detection Method. IEEE 5th Control and System Graduate Research Colloquium. 213–218.
Manolis.A. 1983. The Diagnostic Potential Of Breath Analysis. Clin. Chem. 29: 5–15.
A. D. Wilson and M. Baietto. 2011. Advances In Electronic-Nose Technologies Developed For Biomedical Applications Sensors (Basel.) (11)1: 1105–1176.
T. Mohamed, A. Sabeel, S. E. Eluwa, and S. Mohamed. 2000. Detection of Volatile Compounds in Urine. 3–6.
R. Dutta, E. L. Hines, J. W. Gardner, and P. Boilot. 2002. Bacteria Classification Using Cyranose 320 Electronic Nose. Biomed. Eng. Online. 1: 4.
R. Palaniappan and K. V. R. Ravi. 2006. Improving Visual Evoked Potential Feature Classification For Person Recognition Using PCA And Normalization. Pattern Recognit. Lett. 27(7): 726–733.
Jolliffe.I.T. 2002. Principal Component Analysis. Springer Series in Statistics.
C. Ji. D, F. Song. B, and H. Yi. H. 2009. Equipment Fault Diagnosis based on Probabilistic Neural Networks and Simulation Analysis. Fire Control Command Control. 34: 82–85.
M. Mishra, A. R. Jena, and R. Das, 2013. A Probabilistic Neural Network Approach for Classification of Vehicle. 2(7): 367–371.
N. Bhattacharyya and A. Jana 2008. Incremental PNN Classifier for a Versatile Electronic Nose 242–247.
R. Antony, M. S. G. Nandagopal, S. Rangabhashiyam, and N. Selvaraju. 2014. Probabilistic Neural Network Prediction Of Liquid- Liquid Two Phase Flows In A Circular Microchannel. J. Sci. Ind. Res. 73: 525–529.
H. Zhang, M. Ö. Balaban, and J. C. Principe. 2003. Improving Pattern Recognition Of Electronic Nose Data With Time-Delay Neural Networks. Sensors Actuators B Chem. 96(1–2): 385–389
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.