A NOBLE MOLECULAR IMPRINT POLYMER BIOSENSOR FOR CAFFEIC ACID DETECTION IN ORTHOSIPHON STAMINEUS EXTRACTS

Authors

  • A.K.M. Shafiqul Islam Department of Chemical Engineering Technology, University Malaysia Perlis, , 01000 Kangar, Perlis, Malaysia
  • Hemavathi Krishnan School of Bioprocess Engineering, University Malaysia Perlis, , 01000 Kangar, Perlis, Malaysia
  • Harbant Singh School of Bioprocess Engineering, University Malaysia Perlis, , 01000 Kangar, Perlis, Malaysia
  • Mohd Noor Ahmad School of Material Engineering, University Malaysia Perlis, 01000 Kangar, Perlis, Malaysia

DOI:

https://doi.org/10.11113/jt.v77.6255

Keywords:

Molecular Imprint Polymer (MIP), Quartz Crystal Microbalance (QCM), caffeic acid

Abstract

A molecular imprint polymer (MIP) biosensor has been developed to determine caffeic acid in misai kucing (Orthosiphon stamineus) samples. The simulation of HyperChem 8.0 software gave a suitable template and functional monomer ratio for the MIP preparation. The MIPs were prepared by non-covalent bulk polymer approach. The analytical performance of MIP and NIP studies were based on the frequency change of mass sensitive quartz crystal microbalance sensor. The MIP biosensor showed good sensitivity to caffeic acid from 1.5 ng/ml - 12.5 ng/ml with a R2 value of 0.98 whereas NIP sensor showed very low response. The caffeic acid in O. stamineus extract and two commercial products were quantified using the MIP biosensor

References

Alshawsh, M. A., Abdulla, M. A., Ismail, S., Amin, Z. A., Qader, S. W., Hadi, H. A., & Harmal, N. S. 2012. Molecules.17: 5385–5395.

Jaganath, I. B., & Ng, L. T. 2000. Herbs: The Green Pharmacy of Malaysia. Vinpress. Kuala Lumpur, Malaysia. 76.

Chao, C. V., Mong, M. C., Chan, K. C., & Yin, M. C. 2010. Molecular Nutrition and Food Research. 54: 4527–4536.

Prasad, N. P., Karthikeyan, A., Karthikeyan, S., & Reddy, B. V. 2011. Molecular and Cellular Biochemistry. 349: 11–15.

Shafiqul Islam, A. K. M., Ismail, Z., Ahmad, M. N., Othman, A. R., Dharmaraj, S., & Shakaff A. Y. M. 2003. Sensors and Materials. 15: 209–218.

Andersson, L. I. 2001. Bioseparation. 10: 353 –364.

Vasapollo. G., Sole. R. D., Mergola, L., Lazzoi, M. R., Scardino, A., Scorrano, S. and Mele, G. 2011. International Journal of Molecular Science.12: 5908–5945.

A. P. Sergey, S. Subrahmanyam, P. F. T. Antony. 2001. Research Articles. 21: 292–296. Cranfield University, UK.

Benilda, S. E., & Sevilla, F. 2004. Sensors and Actuators. 107: 782–790.

Dewar, M. J. S., & Storch, D. M. 1985. Journal of the American Chemical Society. 107: 3898–3902.

Hawari, H. F., Samsudin, N. M., Ahmad, M. N., Shakaff, A. Y. M., Ghani, S. A., & Wahab, Y. 2012. Procedia Chemistry. 6: 100-109.

Ellwanger, A., Berggren, C., Bayoudh, S., Crecenzi, C., Karlsson, L., Owens, P. K., Ensing, K., Cormack, P., Sherrington, D., & Sellergren, B. 2001. Analyst. 126: 784–792.

Chen, J., McAllister, M. A., Lee, J. K., Abd Houk, K. N. 1998. Journal of Organic Chemistry. 63(14): 4611– 4619.

Riahi, S., Eynollahi S., Ganjali, M.R., Norouzi, P. 2010. Int. J. Electrochem. Sci. 5: 509-516.

A. P. Sergey, J. W. Micheal. 2013. Designing Receptors for the Next Generation of Biosensors.12. Cranfield, Bedfordshire, UK: Springe.

Downloads

Published

2015-11-12

Issue

Section

Science and Engineering

How to Cite

A NOBLE MOLECULAR IMPRINT POLYMER BIOSENSOR FOR CAFFEIC ACID DETECTION IN ORTHOSIPHON STAMINEUS EXTRACTS. (2015). Jurnal Teknologi (Sciences & Engineering), 77(7). https://doi.org/10.11113/jt.v77.6255